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Abstract 
Pedestrian fatalities in Tennessee are predominantly associated with nighttime, high-speed crashes 
(35 mph and above), and straight midblock maneuvers, like those observed on urban arterials. The 
existing literature primarily relies on the functional classification of roads, which can be 
ambiguous, especially when used for pedestrian safety and its relationship with roadway-related 
variables. This study introduces the concept of "high-risk crashes" to identify potential hazardous 
pedestrian crashes beyond state classifications. Using unsupervised learning algorithms (latent 
class and hierarchical clustering) and supervised learning with manually labeled data, pedestrian 
crashes in Tennessee were categorized into high-risk crashes and non-high-risk crashes based on 
road and environmental features with high accuracy. The classification revealed clusters of high-
risk crashes along wide, straight streets with higher speed limits, limited pedestrian facilities, and 
businesses primarily catering to cars, which may not be officially classified as major arterials. 
Trend analysis of crash involvement and fatalities showed a steep increase in high-risk crashes, 
suggesting that the rise in pedestrian crash severity in Tennessee can be attributed to these crashes. 
Logistic regression results indicated that high-risk crashes are more likely to result in fatal injuries 
in dark conditions, during straight midblock maneuvers, and in non-residential areas. Vehicle size 
did not significantly impact the likelihood of a fatal crash in high-risk crashes. These findings call 
for urgent measures focusing primarily on roads, such as lowering speed limits to 35 mph in 
pedestrian-heavy areas, increasing safe pedestrian crossing opportunities, adopting traffic calming 
devices, and improving lighting to enhance pedestrian safety. 
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Executive Summary 
Previous research has identified several factors contributing to fatal pedestrian accidents, including 
nighttime crashes, high-speed incidents, and midblock crossings. Despite the significant influence 
of environmental and road characteristics on these crashes, current studies often categorize them 
using the Federal Highway Administration's (FHWA) functional classification of arterial and non-
arterial roads. While not inherently incorrect, FHWA acknowledges significant ambiguity in these 
guidelines, which can lead to variations in design considerations. Therefore, this study proposes a 
new approach to identify "high-risk" crashes based on specific road design and environmental 
features, aiming to enhance the identification of potentially dangerous pedestrian crashes. These 
crashes are identified using exploratory tools like unsupervised learning and supervised learning 
algorithms. 
 
We used the Tennessee police crash data for our analyses. The Tennessee Integrated Traffic 
Analysis Network (TITAN) database compiles comprehensive traffic safety data, including details 
on persons, crashes, and vehicles involved. We excluded interstate and rural area crashes, focusing 
on urban environments where most incidents occur. After cleaning and removing missing entries, 
it contained 17,267 records of pedestrian-involved crashes from January 2009 to September 2019. 
After a comprehensive literature review to identify the characteristics of pedestrian crashes and 
their relationship with fatality outcomes, we employ exploratory tools like unsupervised learning 
and supervised learning algorithms to identify the patterns among the crashes based on the road 
and environmental variables. We used Latent Class Clustering (LCC) and Hierarchical Clustering 
(HC) algorithms to categorize crashes into five distinct clusters as listed below: 

• Cluster 1: Wet Roads 
• Cluster 2: Midblock Locations on Narrow Roads 
• Cluster 3: Low-Speed Zones 
• Cluster 4: Intersections 
• Cluster 5: Midblock Locations on Multilane Roads 

When tallying these clusters with fatality data, Cluster 5 was identified as the riskiest cluster, while 
Cluster 3 was identified as the least risky cluster. The insights from these clusters were used to 
train the supervised learning model where functional roadway classifications from E-TRIMS were 
also utilized for determining initial labels for “high-risk” crashes. An Artificial Neural Network 
(ANN) model was fitted using the Multilayer Perceptron (MLP) classifier with an accuracy of 
94.65 percent. This model was used to classify the unlabeled data, with the final categorization 
including 9611 crashes as “high-risk” and “7656” crashes as low-risk. 
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Key findings of this study based on the crash categorization are detailed below: 
 

1. High-risk pedestrian crashes predominantly occur on wide, straight roads with higher speed 
limits, often in non-intersection and dark conditions. These areas frequently lack adequate 
pedestrian infrastructure such as continuous sidewalks, sufficient signals, and well-spaced 
crosswalks, particularly in non-residential and business-centric zones. 

2. Functional classifications based solely on arterial roads may underrepresent risky 
pedestrian crash locations, as similar features are found in non-arterial streets common in 
suburban settings in Tennessee. 

3. Demographic analysis reveals that Black pedestrians are disproportionately affected by 
high-risk crashes compared to White pedestrians, while White drivers are more frequently 
involved in these incidents, consistent with broader safety literature on racial disparities. 

4. Intoxicated pedestrians are overrepresented in high-risk crashes, contrasting with 
intoxicated drivers who are less likely to be involved, highlighting behavioral differences 
in crash risk. 

5. Despite higher exposure among Black pedestrians, White pedestrians are more likely to die 
in high-risk crashes, potentially influenced by Tennessee’s demographic distributions and 
vulnerability among certain populations like the unhoused. 

6. Children, while less exposed, show lower fatality rates in high-risk crashes, suggesting 
varying levels of parental vigilance but also raising concerns about non-child-friendly 
streets in urban areas of Tennessee. 

7. Larger vehicles like pickup trucks and SUVs generally increase pedestrian fatality risk, but 
their differential impact in high-risk crash scenarios may be mitigated by higher travel 
speeds, underscoring the complexity of vehicle-type interactions in crash outcomes. 

8. Trend analysis of “high-risk” and “low-risk” crashes indicates a worsening severity of 
high-risk crashes over time, contributing to rising pedestrian fatalities in Tennessee, 
potentially exacerbated by suburbanization trends affecting marginalized communities. 

 
The study emphasizes the urgent need for improved pedestrian safety measures, focusing on 
enhancing road design and infrastructure to mitigate the growing severity of high-risk pedestrian 
crashes. Key recommendations based on the study findings are listed below: 

1. Consider reducing speeds on streets resembling urban arterials, with a suggested maximum 
speed limit of 35 mph, to enhance pedestrian safety. 

2. Implement road diets on wide arterials by removing two-way turn lanes and strategically 
placing signalized intersections at regular intervals near businesses to reduce pedestrian 
crossing distances and encourage speed reduction. 

3. Install pedestrian refuge islands at road crossings and enhance lighting and signals in high 
pedestrian traffic areas to improve visibility and promote safer decision-making. 

4. Ensure frequent and well-lit pedestrian crossings, including midblock crossings, are 
equipped with appropriate lighting and signals to optimize visibility and pedestrian safety. 
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Introduction 
The share of pedestrian fatalities in the US has risen consistently, increasing from 13 percent in 
2010 to 17.6 percent of all road fatalities in 2021. The Governors Highway Safety Association 
(GHSA) reports that 7,624 pedestrians were killed in 2021, with 2022 projections pointing to the 
highest number of pedestrian deaths in 40 years. This reflects a 77 percent increase from 2010 and 
a 17 percent jump from the 2020 figures. (Macek, 2023). In contrast, other developed countries 
have achieved advances in pedestrian safety during the same timeframe. (European Transport 
Safety Council, 2020; UK Department for Transport, 2020). Safety researchers and news media 
have identified various factors potentially contributing to this trend, including the growing 
presence of larger utility vehicles, an aging demographic, and heightened distractions among 
drivers and pedestrians. (Schmitt, 2020; Tyndall, 2021). Additionally, research also points to the 
impact of suburbanization, altering land-use patterns and travel behaviors and ultimately 
aggravating interactions between pedestrians, road infrastructure, and vehicles. (Ferenchak & 
Abadi, 2021). 
 
Tennessee ranks among the top five most dangerous states for pedestrians as of 2022 (Macek, 
2023). From 2009 to 2019, the state saw its pedestrian fatalities more than double, with a steep 
increase in the fatality rate from 4.3 to 7.3 deaths per 100 pedestrians involved in crashes, marking 
a 70 percent increase in fatality rate. Urban areas in Tennessee, particularly mid-blocks on high-
speed multilane roads, recorded a disproportionate number of pedestrian deaths, mostly during 
nighttime hours. Data from this period shows that 74.5 percent of these fatalities occurred in dark 
conditions, 63.1 percent at mid-block locations, and 77.3 percent on roads where the speed limit 
was 35 mph or higher. Interestingly, in terms of pedestrian crash involvement, nighttime crashes, 
midblock crashes, and high-speed pedestrian crashes only accounted for 40 percent of total 
pedestrian crashes. (Parajuli et al., 2023). This disparity suggests an overrepresentation of 
pedestrian fatalities in the abovementioned crash categories in Tennessee. In general, pedestrian 
safety literature also links severe pedestrian crashes to nighttime, midblock, and high-speed 
conditions, frequently associated with urban arterials. (Ferenchak & Abadi, 2021; Hossain et al., 
2022; Hu & Cicchino, 2018). While current research efforts in identifying risk factors have 
contributed to our understanding of pedestrian safety, only a few studies have focused on road 
design characteristics while analyzing pedestrian crashes. Our study examines this relationship, 
focusing on pedestrian crashes in urban areas in Tennessee. 

Background 
The Federal Highway Administration (FHWA) classifies roadways into arterials and non-arterials 
according to their functions, as shown in Figure 1. Arterials are further classified into principal 
arterials, including fully controlled roadways such as interstates, freeways, expressways, and 
minor arterials. While fully controlled arterials do not have pedestrian accesses, other arterials, 
indicated by “Other Principal Arterials” in Figure 1 generally allow access to pedestrians. In 
general terms, principal arterial or major arterial refers to this specific type of arterial with partial 
or uncontrolled access. 
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(Source: FHWA and CDM Smith) 

Figure 1. Federal functional classification of roadways 

 
Major arterials are vital in providing high mobility, connecting metropolitan centers, and granting 
access through rural areas, with open access to adjacent land uses. Similarly, minor arterials are 
moderately sized roads serving smaller geographical areas and providing connectivity to the 
arterial system and are typically smaller than major arterials. Arterials plays an important role in 
the US road network, accommodating higher traffic volumes and speeds to ensure efficient 
mobility and accessibility for car drivers, often at the expense of other road user safety. In addition 
to arterials, collector roads and local roads also allow pedestrians access. In its report, FHWA 
specifies that this classification of roads comes with some ambiguity and potential overlaps, as it 
is based on the roadway functionality. For instance, the FHWA classification guidelines have 
overlaps between arterials and collectors to account for the variation within the functional classes 
(Federal Highway Administration, 2023). 
 
Arterials are generally broad, multilane roads designed to accommodate high-speed, high-volume 
traffic with crosswalks that are widely spaced, allowing uncontrolled access to nearby land uses. 
Due to the higher speeds and potentially heavier vehicles on arterials compared to other local 
roads, pedestrian activities carry a significant risk, especially in urban arterials where traffic is 
high, land use is relatively dense, and many arterials are served by transit systems. Furthermore, 
the wide layout makes arterials challenging to illuminate during nighttime, exacerbating the risks, 
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especially when pedestrians cross away from designated crosswalks. Therefore, it is crucial to 
improve pedestrian safety on these roads. It has been a popular practice for state agencies and 
researchers to use the functional classification of roadways to study the nature and severity of 
traffic crashes, including pedestrian crashes. However, as indicated by the FHWA’s definition, 
this type of classification has some ambiguity. To that end, this research hypothesizes that the 
current classification may not fully capture all streets with arterial characteristics, which are often 
accepted as the most dangerous roads for pedestrians. This could lead to an underrepresentation of 
crashes and may skew perceived risks associated with urban arterials for both pedestrians and 
authorities. 
 
In US suburban areas, most roads, including collectors and even some local roads, are designed 
primarily for vehicle mobility. Thus, streets are characterized by their width and large block 
lengths, providing ample opportunities for vehicles to exceed speed limits (Ewing et al., 2003). 
Furthermore, implementing lower speed limits and adding pedestrian infrastructure, such as 
regular crossings and adequate lighting, on these streets would be costly. Consequently, most of 
these roads remain in poor condition for pedestrians, making them as dangerous as major arterials 
in terms of pedestrian safety, if not more. Therefore, there is a crucial need for research to identify 
these streets where pedestrian crashes are more likely to be fatal, allowing for targeted policies 
and engineering interventions to improve safety. 

Research Objectives 
This study proposes categorizing pedestrian crashes into high-risk and low-risk crashes based 
solely on roadway and environmental characteristics. Using urban pedestrian crash data in 
Tennessee, this study employs machine learning techniques like unsupervised and supervised 
learning to distinguish crashes more likely to have a fatal or severe outcome from crashes with less 
severe outcomes. By controlling factors such as vehicle size, pedestrian age, and driving or 
walking under the influence, we aim to understand the impact of road design on pedestrian safety. 
With proper identification of high-risk crashes, the study will further explore the characteristics of 
these crashes and attempt to understand the underlying mechanism behind them. Finally, based on 
the study results, we provide recommendations to mitigate these deadly pedestrian crashes and 
enhance overall pedestrian safety. 
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Literature Review 
Studies have been tackling traffic safety issues since the invention of the car. However, increased 
attention to pedestrian safety is a more recent development. As a result, we now have a better 
understanding of the risk factors affecting pedestrians. The first part of this review focuses on 
major risk factors associated with pedestrian crashes, with a particular emphasis on roadway 
design and built-environment factors. The second part will outline exploratory research efforts to 
understand pedestrian crashes and the methodologies used. 

Pedestrian Fatality Risk Factors 
The severity of pedestrian crash outcomes is significantly influenced by the transfer of kinetic 
energy, which is directly linked to the likelihood of fatal outcomes (Ballesteros et al., 2004). This 
energy transfer is a product of the vehicle's weight and the square of its speed. Studies have shown 
that vehicle size, which correlates with weight, and the posted speed limit, which correlates with 
impact speed (Elvik et al., 2004), both play crucial roles in determining fatal outcomes. Larger 
vehicles like SUVs, pickups, and minivans are more likely to result in fatalities compared to 
smaller cars such as sedans and coupes (Tyndall, 2021). Regarding speed, studies invariably agree 
that higher posted speed limits on roads are a major cause of pedestrian deaths. (Hossain et al., 
2022; Islam, 2023; Prato et al., 2018; Salon & McIntyre, 2018). For instance, a study indicates 
that at an impact speed of about 25 mph, the probability of pedestrian death is 25 percent, whereas 
at around 55 mph, this probability rises to 90 percent (Tefft, 2013). 
 
In addition to high speeds, wide roads with multiple lanes significantly contribute to the 
disproportionate number of pedestrian fatalities (Islam, 2023; Nabavi Niaki et al., 2016; Rab et 
al., 2018). Schneider, Proulx, et al. examined the top 34 pedestrian fatality hotspots in the US and 
found that these areas are predominantly multilane roads with high traffic volumes and adjacent 
commercial land uses. Most of these roads have posted speed limits over 30 mph and are located 
near low-income neighborhoods (Schneider et al., 2021). A study notes that the combination of 
high speeds, poor lighting infrastructure, and crossings at midblock locations are often associated 
with urban arterials (Goodman et al., 2022). Multiple studies acknowledge that urban arterials, 
with infrastructure gaps like discontinuous sidewalks, missing pedestrian signals and signs, and 
marked pedestrian crossings, are often linked with pedestrian fatality in the US (Bellis et al., 2021; 
Long Jr & Ferenchak, 2021; Mansfield et al., 2018; Schneider et al., 2021). 
 
The safety literature has also identified other crucial factors that are responsible for causing higher 
injury severity outcomes in pedestrian crashes. These factors encompass poor visibility during 
nighttime, intoxicated driving and walking, demographics of pedestrians and drivers, the clothing 
worn by pedestrians, distractions affecting both parties, surrounding land use, and the influence of 
advanced vehicle technologies like emergency braking and pedestrian detection systems (Aziz et 
al., 2013; Keller et al., 2011). Elderly and child pedestrians are more likely to be involved in a 
fatal traffic crash (Davis, 2001; Kim et al., 2008). Similarly, intoxicated pedestrians have a high 
probability of severe injury during a pedestrian crash (Dultz & Frangos, 2013; Zajac & Ivan, 
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2003). Studies have also shown that minority populations, such as Black pedestrians, Native 
Americans, people of color, and low-income populations, bear a disproportionate burden of 
pedestrian fatalities (Long Jr & Ferenchak, 2021; Noland et al., 2013; Roll & McNeil, 2022; 
Sanders & Schneider, 2022). A study found that pedestrian fatality and severe injury hotspots are 
found in areas with higher percentages of non-white residents, coupled with lower sidewalk 
coverage (Long Jr & Ferenchak, 2021). The connection between infrastructure gaps and minority 
populations is attributed to historical neglect in land use development, which has resulted in 
increased traffic exposure and inadequate pedestrian facilities (Roll & McNeil, 2022). Lastly, 
inclement weather and walking or driving during the night negatively impact pedestrian injury 
outcomes. Poor visibility and reduced road friction during harsh weather can create slippery 
surfaces and increase driver maneuvering errors, thereby heightening the severity of pedestrian 
injuries (Li et al., 2017). 
 
Multiple longitudinal studies investigating the steep incline in pedestrian fatality in the US during 
the last decade also support the findings from severity studies based on cross-sectional data 
(Ferenchak & Abadi, 2021; Hu & Cicchino, 2018; Schneider, 2020; Tefft et al., 2021). These 
studies have identified numerous factors causing the rise in pedestrian fatalities over the years, 
employing methods such as cross-tabulations, linear regression models, and univariate analyses. 
Significant contributors identified include higher speeds, arterial roads, nighttime, increased 
vehicle size, and other related factors. Another longitudinal study in urban Tennessee determined 
a significant increase in injury severity outcomes for urban arterials during the 2009-2019 period 
(Parajuli et al., 2023). Research investigating walking distances notes that Southern states exhibit 
increasing pedestrian fatality trends due to differences in the built environment, law enforcement 
practices, and driving culture (Vellimana & Kockelman, 2023).  
 
Some studies have also investigated the relationship between pedestrian behavior and the 
infrastructural elements of roads. Pedestrian crashes at nighttime are more closely associated with 
the posted speed limits on roads rather than with speeding as a human factor (Sanders et al., 2022). 
This pattern is also evident with pedestrians under the influence of alcohol or drugs. Intoxicated 
pedestrians are more likely to suffer fatal injuries on roads with infrastructure deficits, such as 
inadequate lighting (Hezaveh & Cherry, 2018), or in hazardous locations like midblock areas and 
dark roadways (Das et al., 2020). Additionally, pedestrian groups often form far from intersections 
because bus stops are not conveniently located near crossing points, encouraging midblock 
crossings (Abaza et al., 2018). Finally, while vehicle technologies such as emergency braking help 
mitigate pedestrian safety issues, it is still not as effective for poorly lit conditions and high-speed 
roads, which could prove fatal for pedestrians (Cicchino, 2022). 

Exploratory Studies in Pedestrian Safety 
Several studies have employed exploratory data analysis methods to identify essential groupings 
of crash characteristics, thereby allowing for a more comprehensive understanding of the most 
critical factors involved. Data mining techniques, such as Multiple Correspondence Analysis 
(MCA) and Association Rules Mining (ARM), have been widely used to group crashes exhibiting 
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similar features. For instance, a Louisiana study utilized MCA to demonstrate that nighttime 
crashes with poor lighting conditions were strongly linked to fatal pedestrian outcomes (Das & 
Sun, 2015). Another study applied ARM to categorize crashes involving children, elderly 
pedestrians, older drivers and distracted driving behaviors (Hossain et al., 2022). Moreover, Latent 
Class Clustering (LCC) has been used to identify distinct pedestrian clusters, revealing unique 
typologies that are not immediately obvious. For example, one study found a specific cluster of 
pedestrians crossing roads at non-intersection locations during dark hours, from midnight to 6 am. 
This study also employed multinomial logistic regression to analyze these clusters and assess 
injury severity (Sun et al., 2019). Inspired by this approach, our research begins with unsupervised 
clustering methods such as LCC and Hierarchical Clustering (HC) and then advances to the use of 
supervised learning. Through supervised machine learning, we aim to achieve a more precise 
classification of roadways and to identify factors influencing pedestrian safety on urban roads in 
Tennessee. 

Research Gaps and Contributions 
To the best of the authors' knowledge, this is one of very few studies that explore beyond the state 
agencies' arterial classifications to identify potentially fatal crashes. It brings a novel perspective 
to the field by exploring the categorization of high-risk crashes according to road and 
environmental characteristics available in the crash database. Moreover, it performs a 
comprehensive analysis of these crashes, investigating how they interact with other crash features. 
This leads to novel insights into the relationships with the existing functional classification of 
roadways. This study's methodology offers a significant contribution by providing a replicable 
approach to identifying locations with high pedestrian fatality rates and hazardous road segments 
for hotspots analysis. Lastly, since pedestrian safety trends in Tennessee closely follow the national 
trends and has a large suburban population, the study results will not only give a clear picture of 
why pedestrian crashes are getting more severe each year but also provide insight into the 
aggravating national pedestrian safety situation during the last decade.
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Data and Methodology 
Using Tennessee Integrated Traffic Analysis Network (TITAN) police crash data from 2009 to 
2019, we categorized crashes as high-risk or low-risk based on road and environmental 
characteristics through clustering algorithms and supervised learning techniques. We then 
analyzed these categorized crashes to understand their nature using spatial analysis, trend analysis, 
and logistic regression models. While Python programming was used for the cleaning and database 
creation, most of these analyses were performed in the R environment. The following subsections 
will provide a detailed discussion of the data and methodologies used in this project. 

Data 
The Tennessee Integrated Traffic Analysis Network (TITAN) database, managed by the Tennessee 
Department of Safety and Homeland Security, collects all traffic safety-related data, including 
traffic crashes reported by law enforcement agencies (Tennessee Highway Safety Office, 2021). 
To ensure uniformity, TITAN adheres to the Model Minimum Uniform Crash Criteria (MMUCC) 
guidelines (NHTSA, 2017), recording injury outcomes on the KABCO scale, where K denotes a 
fatal crash and O indicates no injury (Federal Highway Administration). TITAN comprises three 
main datasets: person, crash, and vehicle. The person dataset contains details on all individuals 
involved in the crash, including demographics, intoxications, actions during the crash, and injury 
severity outcome. The crash dataset includes specifics such as date, time, location, collision type, 
lighting conditions, and other infrastructure-related details including if the crash occurred in 
parking lots and private properties. The vehicle dataset provides information on each vehicle 
involved, including details about the vehicle's characteristics, maneuvers, and some built-
environment information like posted speed associated with the vehicle, road profile, alignment, 
surface type, number of lanes, travel direction, etc. We stripped off the personally identifiable 
information from the dataset before proceeding with the analyses. 

For this report, we excluded interstate crashes and those identified by police as rural area 
crashes. Interstate highways, which have fully controlled access, restrict pedestrian presence, and 
pedestrian crash incidents typically involve emergency stops. Excluding rural area crashes allows 
us to focus specifically on urban roads in Tennessee, where the majority of crashes and fatalities 
occur (Parajuli et al., 2023). We also excluded non-vehicle crashes, such as those involving farm 
equipment or golf carts. After cleaning the dataset and removing entries with missing values, we 
were left with 17,267 records of pedestrian-involved crashes from January 2009 to September 
2019. Additionally, we utilized electronic - Tennessee Roadway Information Management 
System (E-TRIMS) data to distinguish roadways that are functionally classified at the state level. 
This distinction will be important for pre-labeling certain pedestrian crashes for supervised 
learning, which will be elaborated on later. 
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Unsupervised Learning Classification 
Unsupervised learning is a machine learning technique to group observations into clusters by 
identifying hidden patterns and similarities. In our study, we employed two methods, Latent Class 
Clustering (LCC) and Hierarchical Clustering (HC), to cluster pedestrian crash data from urban 
Tennessee. LCC is popular as a generalized finite modeling technique useful for analyzing 
categorical data and uncovering hidden typologies, making it relevant in the transportation safety 
field. For this clustering, we have used an open-source R package called poLCA (Linzer & Lewis, 
2011). HC is also a widely used unsupervised learning technique known for its simplicity and 
intuitive nature, primarily due to its ability to form clusters using dendrograms. For HC, we utilized 
the agglomerative clustering routine, employing the Jaccard distance matrix (Jaccard, 1912) and 
Ward's linkage method to compute the hierarchical clusters (Ward Jr, 1963). To determine the 
optimal number of clusters for LCC, an elbow plot displaying Akaike Information Criteria (AIC) 
values against the number of clusters will be generated. The same number of clusters will then be 
used for HC. This approach allows us to analyze each cluster type and assess whether both 
clustering algorithms consistently identify the most hazardous and least hazardous clusters. 
 
Our study focuses on categorizing crash data based on road and environmental features. Road 
features include factors such as the number of travel lanes, traffic flow type, traffic control type, 
surface condition, residential land use, intersection location, parking location, straight maneuver 
at midblock locations, and posted speed limit. Environmental features, that have a strong bearing 
on the roadway designs, include lighting conditions, weather conditions, and weekends, offering 
a comprehensive view of the circumstances surrounding pedestrian crashes. The cross-tabulated 
clustering algorithm results will help us understand each cluster and identify the most hazardous 
clusters based on the specified characteristics. It will also aid in making informed decisions for 
pre-labeling in supervised learning classification. 

Supervised Learning Classification 
Although unsupervised models provide valuable insights, they have limitations. One major 
drawback is their inability to assess the importance of individual features within the model, making 
it challenging to identify critical crash characteristics. Additionally, since unsupervised learning 
depends solely on inherent data patterns and structures, noise, and outliers can significantly affect 
clustering results. Supervised learning classification methods can address these issues, but they 
require labeling of the data. The TITAN database does not provide comprehensive information for 
all pedestrian crashes, making it impractical to manually label every crash. However, manual 
labeling can be confidently applied to certain crashes, such as those near major urban arterials and 
in low-speed zones like parking lots, allowing us to categorize them as high-risk or low-risk, 
respectively. For this pre-labeling, we utilized roadways classified as major arterials in the E-
TRIMS database and insights from the unsupervised learning clusters to determine the initial labels 
with high confidence. A neural network model was developed using the predetermined labels after 
splitting the data into training and testing datasets. 
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We used the “caret” package in R  (Kuhn, 2008) for the supervised learning model training along 
with the “nnet” package (Ripley et al., 2016) to fit an Artificial Neural Network (ANN) model. 
The model uses the Multilayer Perceptron (MLP) classifier utilizing the standardized labeled data 
and a logistic sigmoid activation function. The MLP can discern complex patterns and 
relationships within the data with multiple layers, allowing it to make precise and well-informed 
predictions. As a feedforward ANN model, data in an MLP moves in a single direction, beginning 
with the input layer, through the hidden layers, and reaching the output layer, with no feedback 
loops involved (Gardner & Dorling, 1998). The model was fitted using a grid search of 
hyperparameters for the number of hidden neurons and the regularization parameter. The model 
was used to classify the unlabeled pedestrian crashes using an appropriate threshold for classifying 
crashes into two groups. 

Logistic Regression 
We fitted three logistic regression models to understand the characteristics of high-risk crashes, as 
identified from the supervised learning classification results. The first model is a binary logit model 
with risk labels as the dependent variable and crash characteristics as the independent variables. 
This model will give us a comprehensive understanding of high-risk crashes and their occurrences 
based on environmental features. The remaining two models include the injury severity model 
using logistic regression with the fatality outcome as the dependent variable to gain deeper insights 
into the characteristics of high-risk crashes and other relevant variables concerning fatality. A 
similar approach was used by Sun et al. where the study used a multinomial logit model for 
studying the characteristics of unique pedestrian crash clusters (Sun et al., 2019). Since we are 
dealing with binary classification, we developed two logistic regression models for injury severity 
models: the Base Model (BM) and the Interaction Model (IM). BM is a conventional logistic 
regression model to get a superficial understanding of variables associated with pedestrian crashes. 
IM is an interaction model, where we use high-risk crashes as the interaction term to identify the 
relationship between high-risk crashes and other crash variables.
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Results and Discussions 
This section is divided into multiple sub-sections of results and discussions for coherency. 

Unsupervised Learning Classification Results 
We used an AIC plot against the number of clusters, to determine the optimal number of clusters 
for LCC. As seen in Figure 2, the elbow point is approximately at 5 clusters, which we selected as 
the optimal number of clusters for LCC, and this set was also the easiest to interpret. We also chose 
the same number of clusters for HC, for consistency and comparative analysis of similar clusters.  
 

 
Figure 2. Number of LCC clusters vs. AIC values 

 

Table 1. Cluster sizes for LCC and HC 

Clusters Cluster Size for LCC (%) Cluster Size for HC (%) 
Cluster 1 2,478 (14.4) 2,519 (14.6) 
Cluster 2 4,801 (27.8) 5,453 (31.6) 
Cluster 3 4,240 (24.6) 3,474 (20.1) 
Cluster 4 3,072 (17.8) 3,291 (19.1) 
Cluster 5 2,676 (15.5) 2,530 (14.7) 
Total 17,267 (100) 17,267 (100) 

 
The cluster labels for both HCC and LC are synced according to their cluster sizes (refer to Table 
1) and severity levels (refer to Figure 3). Consequently, the clusters exhibiting similar distributions 
are labeled with identical names for both algorithm results. Table 1 gives an overview of cluster 
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sizes for both LCC and HC. In Table 1, we observed that Cluster 2 is the largest cluster and Cluster 
1 is the smallest cluster for both algorithms. However, for HC, Clusters 5 and 1 are of similar size. 
Furthermore, Figure 3 reveals that Cluster 5 and Cluster 2 are among the most hazardous clusters, 
while Cluster 3 is the safest for clustering both results. 
 

   
Figure 3. Fatal and non-fatal pedestrian crashes for LCC (left) and HC (right) 

 
Cross-tabulation results for LCC and HC clusters and their relationship with road design and 
environmental variables are shown by Table 2 and Table 3, respectively. With a succinct 
description, each of these five clusters from both clustering processes is detailed below. 

Cluster 1: Wet Roads 
Cluster 1 from both algorithms is associated with pedestrian crashes in inclement weather, mostly 
rainy conditions with probable visibility issues. Table 2 and Table 3 show that around 73 percent 
of crashes in this cluster are associated with the rain and more than 95 percent of crashes happening 
on wet surface roads are classified into this cluster. Furthermore, Figure 4 Suggests that almost all 
crashes occurring in the rain belong to this cluster. Additionally, more than half of the crashes 
occurring in dark conditions are included in this cluster. Regarding the fatality rate, this cluster is 
relatively deadly, with a rate of 4.1 and 3.9 deaths per 100 pedestrians involved in crashes 
according to LCC and HC results, respectively. The overall fatality rate was 4.3 deaths per 100 
pedestrians involved. 
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Figure 4. LCC clusters and weather conditions 

 
 
Cluster 2: Midblock Locations on Narrow Roads 
According to the LCC results (Table 2) and as illustrated by Figure 5, Cluster 2 exclusively 
comprises pedestrian crashes happening on roads with one or two lanes. HC results (Table 3) are 
similar with almost 90 percent of pedestrian crashes in its cluster happening on these streets. Figure 
6 depicts that this cluster category also features more than three-fourths of the crashes happening 
on roads with speed limits ranging from 20 mph to 40 mph. Moreover, the crashes in this cluster 
occur mostly on non-intersection locations (~ 84 percent) and roads without traffic controls, 
suggesting that these crashes are mostly associated with narrow roads and midblock locations. It 
should be noted that more than 66 percent of crashes in this cluster occur on two-way undivided 
roadways. This is also the only cluster with the overrepresentation of residential area crashes, 
further strengthening its association with narrow roads. According to LCC and HC results, the 
fatality rate for this cluster is 5.1 and 5.3 deaths per 100 pedestrians involved, respectively. 

Cluster 3: Low-Speed Zones 
With above 85 percent of the crashes (Table 2 and Table 3) associated with parking lots and private 
properties, this cluster is associated with low-speed zones. Additionally, this cluster primarily 
consists of crashes occurring at speeds of 15 mph or lower, as shown in Figure 6. Around 75 
percent of the crashes belonging to this cluster occur in daylight conditions. This cluster is also the 
safest cluster, with less than a 1 percent chance of fatal injury for pedestrians involved, according 
to both LCC and HC results. 
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Figure 5. LCC clusters and number of lanes 

 
 
Cluster 4: Intersections 
As seen in Figure 7, this cluster distinguishes itself from other clusters with an overrepresentation 
of intersection crashes. Almost 85 percent of this cluster is at intersection locations according to 
the LCC analysis, and 75 percent according to the HC analysis, as shown in Table 2 and Table 3, 
respectively. This cluster was also primarily associated with locations that have traffic control 
devices like signage, pedestrian signals, and other traffic control systems.  With around 2.7 deaths 
per 100 pedestrians involved, this cluster is among the less risky clusters after Cluster 3. 

Cluster 5: Midblock Locations on Multilane Roads 
This group of pedestrian crashes is associated mostly with high-speed wide roads. Both LCC and 
HC results from Table 2 and Table 3 suggest that this cluster comprises more than 85 percent of 
crashes occurring on roads with posted speed limits of 35 mph and higher. Additionally, more 
than 92 percent of the crashes in this cluster happen on multilane roads with at least 3 lanes or 
more. Most of these crashes happen at non-intersection locations without traffic control systems, 
and the majority also occur during nighttime. In terms of fatality outcomes, this cluster is the 
most dangerous among the five with 10.2 deaths per 100 involved according to LCC results 
(Table 2) and 9.8 deaths according to HC results (Table 3). 
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Figure 6. LCC clusters and posted speed limits 

 
 
 
 

 
Figure 7. LCC clusters and intersections 
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Table 2. Cross-tabulation of Latent Class Clustering (LCC) results 

Road & Environmental 
features LCC1 (%) LCC2 (%) LCC3 (%) LCC4 (%) LCC5 (%) Total (%) 

Outcome 
Non-fatal 2,377 (95.9) 4,557 (94.9) 4,200 (99.1) 2,988 (97.3) 2,403 (89.8) 16,525 (95.7) 

Fatal 101 (4.1) 244 (5.1) 40 (0.9) 84 (2.7) 273 (10.2) 742 (4.3) 
At Intersection 

No 1,728 (69.7) 4,033 (84.0) 4,199 (99.0) 489 (15.9) 2,198 (82.1) 12,647 (73.2) 
Yes 750 (30.3) 768 (16.0) 41 (1.0) 2,583 (84.1) 478 (17.9) 4,620 (26.8) 

Light Condition 
Dark-Lighted 1,055 (42.6) 1,276 (26.6) 768 (18.1) 778 (25.3) 1,164 (43.5) 5,041 (29.2) 

Dark-Not Lighted 286 (11.5) 690 (14.4) 124 (2.9) 128 (4.2) 218 (8.1) 1,446 (8.4) 
Dawn/Dusk 96 (3.9) 194 (4.0) 107 (2.5) 103 (3.4) 100 (3.7) 600 (3.5) 

Daylight 1,008 (40.7) 2,586 (53.9) 3,114 (73.4) 2,035 (66.2) 1,166 (43.6) 9,909 (57.4) 
Other 33 (1.3) 55 (1.1) 127 (3.0) 28 (0.9) 28 (1.0) 271 (1.6) 

Straight maneuver at midblock 
No 1,240 (50.0) 1,702 (35.5) 3,171 (74.8) 1,989 (64.7) 922 (34.5) 9,024 (52.3) 

Yes 1,238 (50.0) 3,099 (64.5) 1,069 (25.2) 1,083 (35.3) 1,754 (65.5) 8,243 (47.7) 
Land Use       

Residential 669 (27.0) 2,633 (54.8) 867 (20.4) 691 (22.5) 428 (16.0) 5,288 (30.6) 
Non-residential 1,809 (73.0) 2,168 (45.2) 3,373 (79.6) 2,381 (77.5) 2,248 (84.0) 11,979 (69.4) 

Posted Speed Limits 
15 mph or below 693 (28.0) 176 (3.7) 4,236 (99.9) 108 (3.5) 13 (0.5) 5,226 (30.3) 

20 mph, 25 mph, 30 mph 708 (28.6) 2,498 (52.0) 4 (0.1) 1,309 (42.6) 369 (13.8) 4,888 (28.3) 
35 mph and 40 mph 832 (33.6) 1,590 (33.1) 0 (0.0) 1,355 (44.1) 1,552 (58.0) 5,329 (30.9) 

45 mph and above 245 (9.9) 537 (11.2) 0 (0.0) 300 (9.8) 742 (27.7) 1,824 (10.6) 
Traffic Control System (TCS) 

No Control 1,777 (71.7) 4,801 (100) 3,802 (89.7) 0 (0.0) 2,676 (100) 13,056 (75.6) 
Stop sign/ Yield sign 110 (4.4) 0 (0.0) 48 (1.1) 584 (19.0) 0 (0.0) 742 (4.3) 
TCS-With Ped Signal 240 (9.7) 0 (0.0) 0 (0.0) 1,177 (38.3) 0 (0.0) 1,417 (8.2) 

TCS-Without Ped Signal 183 (7.4) 0 (0.0) 0 (0.0) 884 (28.8) 0 (0.0) 1,067 (6.2) 
Others 168 (6.8) 0 (0.0) 390 (9.2) 427 (13.9) 0 (0.0) 985 (5.7) 

Traffic Flow 
1-Way Trafficway 62 (2.5) 79 (1.6) 238 (5.6) 134 (4.4) 58 (2.2) 571 (3.3) 

2-Way Divided w/ Barrier 85 (3.4) 159 (3.3) 15 (0.4) 145 (4.7) 149 (5.6) 553 (3.2) 
2-Way Divided w/o Barrier 477 (19.2) 1,043 (21.7) 67 (1.6) 773 (25.2) 863 (32.2) 3,223 (18.7) 

2-Way Not Divided 1,324 (53.4) 3,280 (68.3) 1,341 (31.6) 1,824 (59.4) 1,249 (46.7) 9,018 (52.2) 
Other 530 (21.4) 240 (5.0) 2,579 (60.8) 196 (6.4) 357 (13.3) 3,902 (22.6) 

Trafficway Type 
Parking Lot 456 (18.4) 69 (1.4) 2,692 (63.5) 14 (0.5) 36 (1.3) 3,267 (18.9) 

Private Property/Road 140 (5.6) 81 (1.7) 985 (23.2) 12 (0.4) 17 (0.6) 1,235 (7.2) 
Trafficway 1,882 (75.9) 4,651 (96.9) 563 (13.3) 3,046 (99.2) 2,623 (98.0) 12,765 (73.9) 
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Road & Environmental 
features LCC1 (%) LCC2 (%) LCC3 (%) LCC4 (%) LCC5 (%) Total (%) 

Number of Lanes 
Five or more Lanes 203 (8.2) 0 (0.0) 9 (0.2) 310 (10.1) 669 (25.0) 1,191 (6.9) 

Three/four Lanes 546 (22.0) 0 (0.0) 40 (0.9) 948 (30.9) 1,804 (67.4) 3,338 (19.3) 
One/two Lanes 1,292 (52.1) 4,801 (100) 1,477 (34.8) 1,726 (56.2) 0 (0.0) 9,296 (53.8) 

Other 437 (17.6) 0 (0.0) 2,714 (64.0) 88 (2.9) 203 (7.6) 3,442 (19.9) 
Surface Condition 

Dry 0 (0.0) 4,725 (98.4) 4,016 (94.7) 3,012 (98.0) 2,654 (99.2) 14,407 (83.4) 
Others 26 (1.0) 76 (1.6) 213 (5.0) 60 (2.0) 22 (0.8) 397 (2.3) 

Wet 2,452 (99.0) 0 (0.0) 11 (0.3) 0 (0.0) 0 (0.0) 2,463 (14.3) 
Weather 

Clear 297 (12.0) 4,405 (91.8) 3,719 (87.7) 2,796 (91.0) 2,497 (93.3) 13,714 (79.4) 
Cloudy 271 (10.9) 311 (6.5) 379 (8.9) 225 (7.3) 155 (5.8) 1,341 (7.8) 

Other 85 (3.4) 85 (1.8) 142 (3.3) 51 (1.7) 23 (0.9) 386 (2.2) 
Rain 1,825 (73.6) 0 (0.0) 0 (0.0) 0 (0.0) 1 (0.0) 1,826 (10.6) 

Weekend 
No 1,854 (74.8) 3,565 (74.3) 3,192 (75.3) 2,523 (82.1) 2,010 (75.1) 13,144 (76.1) 

Yes 624 (25.2) 1,236 (25.7) 1,048 (24.7) 549 (17.9) 666 (24.9) 4,123 (23.9) 
Number of 
Involvements 2,478 4,801 4,240 3,072 2,676 17,267 

 
Table 3. Cross-tabulation of Hierarchical Clustering (HC) results 

Road & Environmental 
features HC1 (%) HC2 (%) HC3 (%) HC4 (%) HC5 (%) Total (%) 

Outcome 
Non-fatal 2,421 (96.1) 5,165 (94.7) 3,453 (99.4) 3,205 (97.4) 2,281 (90.2) 16,525 (95.7) 

Fatal 98 (3.9) 288 (5.3) 21 (0.6) 86 (2.6) 249 (9.8) 742 (4.3) 

At Intersection 
No 1,793 (71.2) 4,546 (83.4) 3,407 (98.1) 844 (25.6) 2,057 (81.3) 12,647 (73.2) 

Yes 726 (28.8) 907 (16.6) 67 (1.9) 2,447 (74.4) 473 (18.7) 4,620 (26.8) 

Light Condition 
Dark-Lighted 1,044 (41.4) 1,404 (25.7) 672 (19.3) 781 (23.7) 1,140 (45.1) 5,041 (29.2) 

Dark-Not Lighted 293 (11.6) 681 (12.5) 139 (4.0) 124 (3.8) 209 (8.3) 1,446 (8.4) 
Dawn/Dusk 96 (3.8) 220 (4.0) 94 (2.7) 102 (3.1) 88 (3.5) 600 (3.5) 

Daylight 1,039 (41.2) 3,089 (56.6) 2,534 (72.9) 2,178 (66.2) 1,069 (42.3) 9,909 (57.4) 
Other 47 (1.9) 59 (1.1) 35 (1.0) 106 (3.2) 24 (0.9) 271 (1.6) 

Straight maneuver at midblock 
No 1,293 (51.3) 2,254 (41.3) 2,497 (71.9) 2,120 (64.4) 860 (34.0) 9,024 (52.3) 

Yes 1,226 (48.7) 3,199 (58.7) 977 (28.1) 1,171 (35.6) 1,670 (66.0) 8,243 (47.7) 

Land Use       
Residential 707 (28.1) 2,798 (51.3) 545 (15.7) 819 (24.9) 419 (16.6) 5,288 (30.6) 

Non-residential 1,812 (71.9) 2,655 (48.7) 2,929 (84.3) 2,472 (75.1) 2,111 (83.4) 11,979 (69.4) 
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Road & Environmental 
features HC1 (%) HC2 (%) HC3 (%) HC4 (%) HC5 (%) Total (%) 

Posted Speed Limits 
15 mph or below 729 (28.9) 620 (11.4) 3,330 (95.9) 509 (15.5) 38 (1.5) 5,226 (30.3) 

20 mph, 25 mph, 30 mph 724 (28.7) 2,556 (46.9) 131 (3.8) 1,197 (36.4) 280 (11.1) 4,888 (28.3) 
35 mph and 40 mph 841 (33.4) 1,653 (30.3) 10 (0.3) 1,300 (39.5) 1,525 (60.3) 5,329 (30.9) 

45 mph and above 225 (8.9) 624 (11.4) 3 (0.1) 285 (8.7) 687 (27.2) 1,824 (10.6) 

Traffic Control System (TCS) 
No Control 1,831 (72.7) 5,233 (96.0) 3,472 (99.9) 3 (0.1) 2,517 (99.5) 13,056 (75.6) 

Stop sign/ Yield sign 111 (4.4) 53 (1.0) 0 (0.0) 575 (17.5) 3 (0.1) 742 (4.3) 
TCS-With Ped Signal 245 (9.7) 78 (1.4) 1 (0.0) 1,092 (33.2) 1 (0.0) 1,417 (8.2) 

TCS-Without Ped Signal 159 (6.3) 35 (0.6) 1 (0.0) 871 (26.5) 1 (0.0) 1,067 (6.2) 
Others 173 (6.9) 54 (1.0) 0 (0.0) 750 (22.8) 8 (0.3) 985 (5.7) 

Traffic Flow 
1-Way Trafficway 65 (2.6) 66 (1.2) 232 (6.7) 155 (4.7) 53 (2.1) 571 (3.3) 

2-Way Divided w/ Barrier 75 (3.0) 82 (1.5) 18 (0.5) 146 (4.4) 232 (9.2) 553 (3.2) 
2-Way Divided w/o Barrier 476 (18.9) 1,111 (20.4) 75 (2.2) 757 (23.0) 804 (31.8) 3,223 (18.7) 

2-Way Not Divided 1,352 (53.7) 3,599 (66.0) 1,099 (31.6) 1,821 (55.3) 1,147 (45.3) 9,018 (52.2) 
Other 551 (21.9) 595 (10.9) 2,050 (59.0) 412 (12.5) 294 (11.6) 3,902 (22.6) 

Trafficway Type 
Parking Lot 478 (19.0) 353 (6.5) 2,222 (64.0) 189 (5.7) 25 (1.0) 3,267 (18.9) 

Private Property/Road 151 (6.0) 229 (4.2) 748 (21.5) 91 (2.8) 16 (0.6) 1,235 (7.2) 
Trafficway 1,890 (75.0) 4,871 (89.3) 504 (14.5) 3,011 (91.5) 2,489 (98.4) 12,765 (73.9) 

Number of Lanes 
Five or more Lanes 186 (7.4) 50 (0.9) 6 (0.2) 310 (9.4) 639 (25.3) 1,191 (6.9) 

Three/four Lanes 545 (21.6) 179 (3.3) 15 (0.4) 889 (27.0) 1,710 (67.6) 3,338 (19.3) 
One/two Lanes 1,324 (52.6) 4,846 (88.9) 1,251 (36.0) 1,768 (53.7) 107 (4.2) 9,296 (53.8) 

Other 464 (18.4) 378 (6.9) 2,202 (63.4) 324 (9.8) 74 (2.9) 3,442 (19.9) 

Surface Condition 
Dry 4 (0.2) 5,381 (98.7) 3,412 (98.2) 3,106 (94.4) 2,504 (99.0) 14,407 (83.4) 

Others 122 (4.8) 42 (0.8) 62 (1.8) 159 (4.8) 12 (0.5) 397 (2.3) 
Wet 2,393 (95.0) 30 (0.6) 0 (0.0) 26 (0.8) 14 (0.6) 2,463 (14.3) 

Weather 
Clear 285 (11.3) 4,354 (79.8) 3,430 (98.7) 3,127 (95.0) 2,518 (99.5) 13,714 (79.4) 

Cloudy 253 (10.0) 1,035 (19.0) 8 (0.2) 45 (1.4) 0 (0.0) 1,341 (7.8) 
Other 160 (6.4) 64 (1.2) 36 (1.0) 114 (3.5) 12 (0.5) 386 (2.2) 

Rain 1,821 (72.3) 0 (0.0) 0 (0.0) 5 (0.2) 0 (0.0) 1,826 (10.6) 
Weekend 

No 1,901 (75.5) 4,090 (75.0) 2,555 (73.5) 2,701 (82.1) 1,897 (75.0) 13,144 (76.1) 
Yes 618 (24.5) 1,363 (25.0) 919 (26.5) 590 (17.9) 633 (25.0) 4,123 (23.9) 

Number of 
Involvements 2,519 5,453 3,474 3,291 2,530 17,267 
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Unsupervised Learning Classification Discussions 
The clustering results provide a comprehensive understanding of five types of crashes occurring 
in Tennessee according to the road and environment characteristics: crashes in wet roads, narrow 
roads at midblock locations, low-speed zones, intersections, and wide roads at midblock locations. 
The results were consistent across both clustering algorithms. These results were also consistent 
with the spatial distribution of crashes for each cluster. 
 
Figure 8 features a spatial distribution of pedestrian crashes for all five LCC clusters around 
Nashville, Tennessee. Crashes in Cluster 1 do not show a discernible pattern; they are clustered 
around some roads but also scattered across various locations on the map. It is understandable as 
weather-related crashes are spread roughly over the datasets. Cluster 2 is interesting because the 
crashes appear randomly scattered across the map. A closer look reveals that most of the pedestrian 
crashes in this cluster occur on residential streets, giving a more distributed appearance. This 
appearance also conforms with the clustering results stating the relationship of these crashes with 
narrow roads. Cluster 3 crashes occur in random patches, often in areas with large parking lots, 
shopping centers, grocery stores, and malls. Cluster 4 crashes seem to be clustered along certain 
roads, but on closer inspection, most of these crashes occur at intersections with other streets. The 
spatial arrangement of Cluster 5 crashes is quite intriguing; unlike other clusters, these crashes are 
not concentrated in the Downtown area but are instead neatly concentrated along specific streets. 
These streets are multilane, high-speed roads, mostly classified as major arterials according to the 
E-TRIMS dataset. 
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Figure 8. Spatial visualization of LCC clusters in Nashville 

It is safe to assume that crashes in parking lots and on private roads are among the least hazardous, 
with a low likelihood of fatality. In contrast, crashes at non-intersection locations on high-speed 
roads are among the most dangerous for pedestrians. This information is crucial for the next steps, 
as it allows us to confidently use these crash pre-labels for supervised learning classification. 
Supervised learning offers better control in distinguishing between high-risk and low-risk 
pedestrian crashes, unlike unsupervised learning, where the clusters are less flexible. 
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Supervised Learning Classification Results 
Streets classified as “major arterials” in the E-TRIMS dataset are often the roads with higher 
speeds and multiple lanes. Through the literature review, we have established that pedestrians face 
a higher risk of death on these roads. This finding is further supported by unsupervised learning 
results, which show that pedestrian crashes on these roads have about a 10 percent chance of 
resulting in a fatal injury. To identify the pre-labels for high-risk crashes, we overlaid the existing 
crash data with the E-TRIMS dataset. We then labeled non-intersection pedestrian crashes 
occurring within 100 feet of major arterials, as defined by E-TRIMS, as high-risk crashes. 
Similarly, as supported by the pedestrian safety literature and LCC and HC clustering results, we 
labeled the non-intersection-related parking lot as low-risk crashes.  

The pre-processing step resulted in 2,092 crash points associated with major arterials in the E-
TRIMS dataset, labeled as high-risk crashes. Additionally, 3,823 pedestrian crashes were 
identified in parking lots and categorized as low-risk crashes. The remaining crashes were left 
unlabeled. To balance the dataset for future training, 1,800 low-risk crash points were randomly 
selected, and their labels were changed to unlabeled. This adjustment provided us with balanced 
pre-labels: 2,092 high-risk crashes with 237 fatalities, indicating a fatality rate of 11.3 deaths per 
100 pedestrians involved, and 2,023 low-risk crash points with 24 fatalities, indicating a fatality 
rate of 1.2 deaths per 100 pedestrians involved. Figure 9 Offers a visualization of these pre-labels, 
illustrating the distribution of fatality outcomes. 

 
Figure 9. Classification pre-labels vs. fatality outcomes 

 

We then proceeded with the training of the classification model based on these pre-labels. An ANN 
model was fitted with the 70-30 train-test split using the MLP classifier with 10-fold cross-
validation. Like the clustering process, only road design and environmental variables were input 
into the model to determine high-risk and low-risk crashes. These variables include lighting 
condition type, weather type, traffic control presence/type, traffic way flow type, travel lanes, 
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surface condition, posted speed limit, weekend indicator, non-residential land use indicator, 
intersection indicator, and midblock indicator. To optimize the neural network model, we 
performed a hyperparameter search using a grid search approach. Specifically, we tuned two key 
parameters: the number of hidden layers and the weight decay parameter. We considered a range 
from 1 to 7 units in the hidden layer and explored a sequence of decay values from 10-4 to 10-1 on 
a logarithmic scale, resulting in 10 values. We identified the best-fitting model with 3 units in the 
hidden layer and a decay of 0.0015, achieving a cross-validation score of 0.941. The accuracy of 
the model on the test dataset was 94.65 percent, suggesting a robust model based on the pre-labels. 
With this model, we then proceeded to classify the unlabeled pedestrian crashes. For a balanced 
classification of low-risk and high-risk crashes, we defined the cut-off probability for classification 
as 0.9 instead of the default 0.5. 

Cross-tabulation 
Table 4 presents a detailed two-way crosstab analysis of classification results and fatality outcomes 
against crash variables, including road design and environmental variables, pedestrian and driver 
characteristics, and vehicle categories. The neural network classification results show similarities 
with the clustering algorithm results. For instance, high-risk crashes predominantly occur on roads 
with speeds of 35 mph or more, comprising 68 percent of these crashes. This category also includes 
crashes primarily happening in the dark and other low-light conditions such as dawn and dusk, 
accounting for over 50 percent of crashes in these conditions. High-risk crashes frequently occur 
on multilane roads, and two-way divided roads without traffic barriers, and involve straight 
maneuvers at midblock locations. Conversely, low-risk crashes are mainly found in low-speed 
areas like parking lots, non-midblock locations, and daylight conditions. In terms of pedestrian 
demographics, high-risk crashes are more common among males (63 percent male within the high-
risk category compared to 53 percent in the low-risk), Black pedestrians (35 percent in the high-
risk compared to 26 percent in the low-risk), and individuals aged 16 to 54 years (80 percent 
compared to 69 percent. 

Regarding fatalities within high-risk categories, these are overrepresented in dark conditions, at 
speeds above 45 mph, in non-residential areas, in midblock locations, among pedestrians above 
the age of 50, intoxicated pedestrians, male pedestrians, White pedestrians, and in crashes 
involving male or intoxicated drivers. For low-risk categories, fatalities are overrepresented in 
residential areas, crashes involving pickups and SUVs, male pedestrians, pedestrians walking 
under the influence, pedestrians living far from home, and drivers under the influence. There are 
no significant differences among driver characteristics and vehicle types. For a deeper 
understanding of these categories, we have employed statistical modeling, discussed later in this 
section. 
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Table 4. Cross-tabulation of supervised learning classification with fatality outcome vs. crash 
features 

Variables 
High-Risk Low-Risk 

Total 
Non-fatal Fatal Non-fatal Fatal 

Road Design and Environmental Variables  

Light Condition 
Dark-Lighted 3,081 (34.3) 380 (60.9) 1,545 (20.5) 35 (29.7) 5,041  

Dark-Not Lighted 986 (11.0) 125 (20.0) 328 (4.4) 7 (5.9) 1,446  
Dawn/Dusk 310 (3.4) 16 (2.6) 265 (3.5) 9 (7.6) 600  

Daylight 4,479 (49.8) 97 (15.5) 5,267 (69.9) 66 (55.9) 9,909  
Other 131 (1.5) 6 (1.0) 133 (1.8) 1 (0.8) 271  

At Intersection 
No 5,230 (58.2) 487 (78.0) 6,824 (90.5) 106 (89.8) 12,647  

Yes 3,757 (41.8) 137 (22.0) 714 (9.5) 12 (10.2) 4,620  
Posted Speed Limit 

15 mph or below 224 (2.5) 2 (0.3) 4,953 (65.7) 47 (39.8) 5,226  
20 mph, 25 mph, 30 mph 2,782 (31.0) 69 (11.1) 1,989 (26.4) 48 (40.7) 4,888  

35 mph and 40 mph 4,447 (49.5) 309 (49.5) 554 (7.3) 19 (16.1) 5,329  
45 mph and above 1,534 (17.1) 244 (39.1) 42 (0.6) 4 (3.4) 1,824  

Land Use 
Residential 2,175 (24.2) 96 (15.4) 2,937 (39.0) 80 (67.8) 5,288  

Non-residential 6,812 (75.8) 528 (84.6) 4,601 (61.0) 38 (32.2) 11,979  
Straight Maneuver at Midblock Locations 

No 3,976 (44.2) 90 (14.4) 4,890 (64.9) 68 (57.6) 9,024  
Yes 5,011 (55.8) 534 (85.6) 2,648 (35.1) 50 (42.4) 8,243  

Number of Lanes 
Five or more Lanes 1,075 (12.0) 100 (16.0) 16 (0.2) 0 (0.0) 1,191  

One/two Lanes 4,679 (52.1) 257 (41.2) 4,276 (56.7) 84 (71.2) 9,296  
Other 290 (3.2) 26 (4.2) 3,096 (41.1) 30 (25.4) 3,442  

Three/four Lanes 2,943 (32.7) 241 (38.6) 150 (2.0) 4 (3.4) 3,338  
Trafficway Type 

Parking Lot 76 (0.8) 1 (0.2) 3,168 (42.0) 22 (18.6) 3,267  
Private Property or Road 25 (0.3) 0 (0.0) 1,193 (15.8) 17 (14.4) 1,235  

Trafficway 8,886 (98.9) 623 (99.8) 3,177 (42.1) 79 (66.9) 12,765  

Trafficway Flow 
1-Way Trafficway 247 (2.7) 7 (1.1) 313 (4.2) 4 (3.4) 571  

2-Way Divided w/ Traffic Barrier 413 (4.6) 51 (8.2) 89 (1.2) 0 (0.0) 553  
2-Way Divided w/o Traffic Barrier 2,909 (32.4) 173 (27.7) 141 (1.9) 0 (0.0) 3,223  

2-Way Not Divided 4,715 (52.5) 291 (46.6) 3,931 (52.1) 81 (68.6) 9,018  
Other 703 (7.8) 102 (16.3) 3,064 (40.6) 33 (28.0) 3,902  
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Variables 
High-Risk Low-Risk 

Total 
Non-fatal Fatal Non-fatal Fatal 

Traffic Control System 
No Control 5,535 (61.6) 529 (84.8) 6,884 (91.3) 108 (91.5) 13,056  

Stop sign/ Yield sign 592 (6.6) 3 (0.5) 145 (1.9) 2 (1.7) 742  
TCS-With Ped Signal 1,264 (14.1) 39 (6.2) 113 (1.5) 1 (0.8) 1,417  

TCS-Without Ped Signal 1,021 (11.4) 42 (6.7) 4 (0.1) 0 (0.0) 1,067  
Others 575 (6.4) 11 (1.8) 392 (5.2) 7 (5.9) 985  

Surface Condition 
Dry 7,282 (81.0) 526 (84.3) 6,494 (86.2) 105 (89.0) 14,407  

Others 200 (2.2) 7 (1.1) 187 (2.5) 3 (2.5) 397  
Wet 1,505 (16.7) 91 (14.6) 857 (11.4) 10 (8.5) 2,463  

Weather 
Clear 7,047 (78.4) 488 (78.2) 6,079 (80.6) 100 (84.7) 13,714  

Cloudy 564 (6.3) 48 (7.7) 717 (9.5) 12 (10.2) 1,341  
Other 237 (2.6) 11 (1.8) 138 (1.8) 0 (0.0) 386  

Rain 1,139 (12.7) 77 (12.3) 604 (8.0) 6 (5.1) 1,826  
Weekend 

No 7,042 (78.4) 446 (71.5) 5,568 (73.9) 88 (74.6) 13,144  
Yes 1,945 (21.6) 178 (28.5) 1,970 (26.1) 30 (25.4) 4,123  

Vehicle Characteristics 
Vehicle Category 

Heavy vehicles 146 (1.6) 27 (4.3) 118 (1.6) 10 (8.5) 301  
Medium-heavy vehicles 147 (1.6) 15 (2.4) 157 (2.1) 4 (3.4) 323  

Minivan 346 (3.9) 26 (4.2) 349 (4.6) 4 (3.4) 725  
Others 196 (2.2) 16 (2.6) 133 (1.8) 0 (0.0) 345  

Passenger cars 4,448 (49.5) 265 (42.5) 3,583 (47.5) 36 (30.5) 8,332  
Pickups 1,334 (14.8) 116 (18.6) 1,172 (15.5) 26 (22.0) 2,648  

SUV 1,510 (16.8) 115 (18.4) 1,448 (19.2) 31 (26.3) 3,104  
Unknown 860 (9.6) 44 (7.1) 578 (7.7) 7 (5.9) 1,489  

Pedestrian Characteristics 
Pedestrian age 

15 and younger 1,180 (13.1) 13 (2.1) 1,389 (18.4) 23 (19.5) 2,605  
16 - 34 3,359 (37.4) 134 (21.5) 2,330 (30.9) 14 (11.9) 5,837  
35 - 49 1,913 (21.3) 147 (23.6) 1,458 (19.3) 20 (16.9) 3,538  
50 - 64 1,882 (20.9) 236 (37.8) 1,431 (19.0) 29 (24.6) 3,578  

65 and above 637 (7.1) 94 (15.1) 929 (12.3) 32 (27.1) 1,692  
unknown 16 (0.2) 0 (0.0) 1 (0.0) 0 (0.0) 17  

Pedestrian Sex      
Female 3,398 (37.8) 174 (27.9) 3,560 (47.2) 37 (31.4) 7,169  

Male 5,589 (62.2) 450 (72.1) 3,978 (52.8) 81 (68.6) 10,098  
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Variables 
High-Risk Low-Risk 

Total 
Non-fatal Fatal Non-fatal Fatal 

Pedestrian Race 
Black 3,189 (35.5) 197 (31.6) 1,983 (26.3) 35 (29.7) 5,404  
White 3,876 (43.1) 353 (56.6) 3,779 (50.1) 61 (51.7) 8,069  
Other 1,922 (21.4) 74 (11.9) 1,776 (23.6) 22 (18.6) 3,794  

Walking under Influence 
No or Untested 8,345 (92.9) 480 (76.9) 7,312 (97.0) 103 (87.3) 16,240  

Yes 642 (7.1) 144 (23.1) 226 (3.0) 15 (12.7) 1,027  
Crash Location from Pedestrian's Home 

More than 2 miles 4,325 (48.1) 281 (45.0) 3,279 (43.5) 71 (60.2) 7,956  
Less than 2 miles 3,973 (44.2) 302 (48.4) 3,808 (50.5) 41 (34.7) 8,124  

Unknown 689 (7.7) 41 (6.6) 451 (6.0) 6 (5.1) 1,187  

Driver Characteristics      
Driver Age      

15 - 24 1,268 (14.1) 103 (16.5) 1,121 (14.9) 15 (12.7) 2,507  
25 - 54 3,738 (41.6) 309 (49.5) 2,775 (36.8) 60 (50.8) 6,882  

55 and above 1,820 (20.3) 129 (20.7) 1,675 (22.2) 26 (22.0) 3,650  
Unknown 2,161 (24.0) 83 (13.3) 1,967 (26.1) 17 (14.4) 4,228  

Driver Sex 
Female 4,849 (54.0) 240 (38.5) 4,234 (56.2) 46 (39.0) 9,369  

Male 4,138 (46.0) 384 (61.5) 3,304 (43.8) 72 (61.0) 7,898  
Driver Race      

Black 2,595 (28.9) 198 (31.7) 1,838 (24.4) 40 (33.9) 4,671  
White 4,198 (46.7) 336 (53.8) 3,898 (51.7) 59 (50.0) 8,491  
Other 2,194 (24.4) 90 (14.4) 1,802 (23.9) 19 (16.1) 4,105  

Driving Under Influence 
No or Untested 8,794 (97.9) 557 (89.3) 7,330 (97.2) 101 (85.6) 16,782  

Yes 193 (2.1) 67 (10.7) 208 (2.8) 17 (14.4) 485  

Number of Involvements 8,987 624 7,538 118 17,267  
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Table 5. Binary logit model fitted on pedestrian crash characteristics with classification labels 
from supervised learning 

Variables Coef. Std. Error (SE) Statistic 
Dependent Variable:  Risk Label (High Risk = 1) 
Lighting (Base: Daylight) 

Dark - lighted 1.209*** 0.058 20.695 
Dark - not lighted 0.394*** 0.087 4.525 

Dawn/dusk -0.655*** 0.125 -5.225 
Intersection vs otherwise 0.705*** 0.054 12.979 
Straight maneuver at midblock 1.171*** 0.053 22.262 
Residential area vs. Otherwise -1.811*** 0.054 -33.661 
Posted Speed Limit (Base: 20mph - 30 mph) 

15 mph and below -3.078*** 0.088 -35.020 
35 mph and 40 mph 1.662*** 0.053 31.572 

45 mph and above 3.945*** 0.151 26.105 
Vehicle Category (Base: Passenger cars) 

Heavy Vehicles 0.171 0.181 0.945 
Medium Heavy (e.g. Delivery vans) -0.169 0.174 -0.974 

Minivans 0.215˙ 0.123 1.749 
Pickup trucks -0.039 0.073 -0.543 

SUVs 0.022 0.066 0.338 
Other/ Unknown -0.194** 0.092 -2.112 

Pedestrian age (Base: 16-34) 
15 and below -0.209** 0.073 -2.870 

35-49 -0.057 0.067 -0.848 
50-64 0.132˙ 0.067 1.957 

65 and above 0.117 0.092 1.272 
Pedestrian sex: Male vs female 0.007 0.049 0.153 
Pedestrian race: White vs otherwise -0.256*** 0.051 -5.009 
Pedestrian walking under the influence 0.195˙ 0.110 1.765 
Driver Age (Base: 25-54) 

15-24 0.107 0.073 1.452 
55 and above -0.035 0.065 -0.542 

Other/ Unknown -0.482*** 0.106 -4.556 
Driver sex: male vs female -0.003 0.054 -0.051 
Driver Race (Base: White) 

Black -0.24*** 0.061 -3.956 
Other/ Unknown 0.129 0.091 1.414 

Driving Under the Influence (DUI) -0.326** 0.149 -2.192 
Intercept -0.646*** 0.093 -6.958 

Degrees of Freedom Total: 17266 Residual: 17235 
Deviance Null: 23890 Residual: 11520 
AIC value 11580   

***p-value < 0.001, **p-value < 0.01, * p-value < 0.05, ˙ p-value < 0.1 
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Logistic Regression Models 
Table 5 presents the results of the logistic regression model where the dependent variable is the 
risk label for pedestrian crashes, with the high-risk category coded as 1. The model indicates that, 
compared to daylight conditions, crashes occurring in dark but lighted conditions are significantly 
more likely to be high-risk, with a log-odds increase of 1.209. Similarly, crashes in unlighted dark 
conditions have a log-odds increase of 0.394 for being high-risk. Crashes at intersections and those 
involving straight maneuvers at midblock locations are also more likely to be high-risk. 

Conversely, crashes in residential areas are significantly more likely to be low-risk, with a log-
odds decrease of -1.811 (p < 0.001). Vehicle types do not show significant indicators of high-risk 
crashes, suggesting no distinct relationship between vehicle type and crash risk. Similarly, 
pedestrian age and sex generally do not significantly predict high-risk crashes, except for child 
pedestrians (aged 15 and below), who are more associated with low-risk crashes, with a log-odds 
decrease of -0.209 (p < 0.01). 

Pedestrian intoxication shows a weak relationship with high-risk crashes (coef. = 0.195, p < 0.1), 
while driver intoxication is strongly associated with low-risk crashes (coef. = -0.326, p < 0.01). 
Non-White pedestrians are more likely to be involved in high-risk crashes, with a log-odds increase 
of 0.256 (p < 0.001), while Black drivers are more likely to be associated with low-risk crashes, 
with a log-odds decrease of -0.240 (p < 0.001). 

We fitted two injury severity models, BM and IM, with fatal outcomes as the dependent variable 
using logistic regression. The results are presented in Table 6. The Base Model (BM) identifies 
the crucial variables that dictate the probability of a pedestrian fatality given a crash. This model 
serves as a reference for the Interaction Model (IM), which explores the relationship between high-
risk crash categories and fatality outcomes using interaction terms. 

According to the BM model, crashes occurring in dark conditions are significantly associated with 
fatal outcomes compared to daylight conditions. Specifically, the log odds of a fatal outcome 
increase by 1.25 in dark-lighted conditions and by 1.08 in dark conditions without lighting. Limited 
lighting during dawn and dusk also raises the log odds by 0.784, with all these conditions being 
significant at the 0.001 level. Additionally, intersections are strongly associated with non-fatal 
outcomes (coef. = -0.467), whereas straight maneuvers at midblock locations are linked to fatal 
outcomes (coef. = 0.939). 

Speed limits also play a significant role. Compared to a speed limit range of 20-30 mph, speeds of 
15 mph and below are associated with non-fatal outcomes, with a log odds decrease of -0.846. 
Higher speeds are strongly linked to fatal outcomes, with log odds increases of 0.792 for 35-40 
mph and 1.494 for 45 mph and above, all significant at a 99.9 percent confidence level. 

Regarding vehicle characteristics, heavy vehicles like trucks and tractor-trailers are the most 
dangerous for pedestrians, with a log odds increase of 1.795 for fatality. Medium-heavy vehicles, 
such as large delivery vans, also pose a significant risk, with a log odds increase of 0.858 compared 
to passenger cars, significant at a 99.9 percent confidence level. Private vehicles, including 
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minivans (coef. = 0.424), pickup trucks (0.499), and SUVs (coef. = 0.474), are also significantly 
more hazardous to pedestrians than passenger cars. 

Pedestrian age is another critical factor. Compared to the 16-34 age group, older adults are more 
likely to be involved in fatal crashes, with elderly pedestrians aged 65 and above showing a log 
odds increase of 1.88 (p-value < 0.001). There is no clear relationship between pedestrian sex and 
fatality outcomes, but White pedestrians (coef. = 0.301, p-value < 0.001) are more likely to be 
involved in fatal crashes compared to pedestrians of other races. Additionally, intoxicated walking 
(coef. = 0.643) and driving (coef. = 1.373) significantly affect fatality outcomes (p-value < 0.001). 

The estimates for the IM model in Table 6 are similar for the most part, with some notable 
differences. The main-effect variables for lighting conditions show lower magnitudes of log odds 
for fatal outcomes, with an increase of 0.537 (p-value < 0.01) for dark-lighted conditions and 0.637 
for dark-not-lighted conditions. In contrast, the interaction term for high-risk crashes in dark-
lighted conditions has a significant log-odds increase of 0.896 (p-value < 0.001), while the 
interaction with dark-not-lighted conditions shows a smaller increase of 0.624. These interaction 
results indicate that high-risk pedestrian crashes in dark-lighted conditions are more prone to fatal 
outcomes than other lighting conditions. Similarly, although the main-effect coefficient for straight 
maneuvers at midblock locations loses significance, its interaction with high-risk crashes is 
significant at a 99.9 percent confidence level with a log-odds increase of 1.081. 

Interestingly, while the residential area did not have a significant relationship with fatal outcomes 
in the BM model, in the IM model, the main effect shows a positive relationship (coefficient = 
0.950), and the interaction term with high-risk crashes shows a negative relationship (coefficient 
= -1.262), both significant at the 0.001 level. This suggests that pedestrians have higher chances 
of fatal crashes in non-residential areas than in residential areas when the crash belongs to the high-
risk category. 

Additionally, the coefficients of main effects in the IM model for vehicle categories such as heavy 
vehicles (2.385 from 1.795), pickup trucks (0.677 from 0.499), and SUVs (0.701 from 0.474) have 
significant (p-value < 0.01) increased in magnitude, while there is no clear relationship between 
these vehicles when interacted with high-risk crashes, except for heavy vehicles which have a log 
odds decrease of -0.804 with a lower significance level of 0.1. This implies that these vehicle 
categories significantly impact fatal outcomes in low-risk crashes but not in high-risk crashes 
compared to passenger cars. 

The significant log-odds increase of 0.462 for the interaction term for white pedestrians compared 
to non-white pedestrians suggests that white pedestrians are mostly associated with high-risk 
crashes. Lastly, child pedestrians, although not significantly related to fatal outcomes in the BM 
model, now have a positive coefficient of 0.776 (p-value < 0.01) for the main effect and a negative 
coefficient of -1.56 (p-value < 0.01) for the interaction term with high-risk crashes. This indicates 
that child pedestrians are more likely to experience fatal outcomes in low-risk crashes and less 
likely in high-risk crashes, compared to the base category of pedestrians aged 16-34. 
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Table 6. Injury severity modeling with the fatal outcome as the dependent variable 

Variables 
BM  IM 

Coef. SE Coef. SE 

Dependent Variable:  Fatal Outcome = 1 

Lighting (Base: Daylight) 
Dark - lighted 1.25*** 0.105  0.537** 0.224 

Dark - not lighted 1.084*** 0.137  0.637** 0.289 
Dawn/dusk 0.784*** 0.231  0.637˙ 0.346 

Intersection vs otherwise -0.467*** 0.103  -0.379 0.255 
Straight maneuver at midblock 0.939*** 0.101  0.164 0.186 
Residential area vs. Otherwise 0.024 0.100  0.950*** 0.208 
Posted Speed Limit (Base: 20mph - 30 mph) 

15 mph and below -0.846*** 0.182  -0.593** 0.231 
35 mph and 40 mph 0.792*** 0.118  0.713** 0.220 

45 mph and above 1.494*** 0.127  0.485 0.778 
Vehicle Category (Base: Passenger cars) 

Heavy Vehicles 1.795*** 0.218  2.385*** 0.361 
Medium Heavy (e.g. Delivery vans) 0.858** 0.270  1.299** 0.436 

Minivans 0.424** 0.214  -0.214 0.609 
Pickup trucks 0.499*** 0.120  0.677** 0.242 

SUVs 0.474*** 0.113  0.701** 0.239 
Other/ Unknown 0.643*** 0.182  0.649˙ 0.342 

Pedestrian age (Base: 16-34) 
15 and below -0.044 0.196  0.776** 0.326 

35-49 0.597*** 0.122  1.013** 0.310 
50-64 1.276*** 0.114  1.603*** 0.293 

65 and above 1.88*** 0.141  2.325*** 0.318 
Pedestrian sex: Male vs female 0.128 0.091  0.102 0.091 
Pedestrian race: White vs otherwise 0.301*** 0.089  -0.071 0.186 
Pedestrian walking under the influence 0.643*** 0.109  0.673** 0.309 
Driving Under the Influence (DUI) 1.373*** 0.148  1.762*** 0.278 
Risk Label: High-risk vs low-risk    -0.046 0.457 

High-risk × Lighting (Base: Daylight) 
High-risk × Dark - lighted    0.896*** 0.260 

High-risk × Dark - not lighted    0.624˙ 0.332 
High-risk × Dawn/dusk    0.186 0.468 

High-risk × Intersection vs otherwise    -0.045 0.279 
High-risk × Straight maneuver at midblock    1.081*** 0.231 
High-risk × Residential area vs. Otherwise    -1.262*** 0.248 
High-risk × Posted Speed Limit (Base: 20mph - 30 mph) 

High-risk × 15 mph and below    0.278 0.783 
High-risk × 35 mph and 40 mph    0.141 0.268 
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Variables 
BM  IM 

Coef. SE Coef. SE 
High-risk × 45 mph and above    1.067 0.794 

High-risk × Vehicle Category (Base: Passenger cars) 
High-risk × Heavy Vehicles    -0.804˙ 0.450 

High-risk × Medium Heavy (e.g. Delivery vans)    -0.627 0.553 
High-risk × Minivans    0.768 0.652 

High-risk × Pickup trucks    -0.211 0.274 
High-risk × SUVs    -0.282 0.271 

High-risk × Other/ Unknown    0.039 0.373 
High-risk × Ped. age (Base: 16-34) 

High-risk × 15 and below    -1.56*** 0.459 
High-risk × 35-49    -0.507 0.338 
High-risk × 50-64    -0.400 0.318 

High-risk × 65 and above    -0.556 0.356 
High-risk × Ped. Race: White vs otherwise    0.462** 0.207 
High-risk × Ped. Walking under influence    -0.095 0.331 
High-risk × Driving Under the Influence (DUI)    -0.473 0.328 

Driver age, sex, and race controlled  controlled 

Intercept -6.347*** 0.218  -6.624*** 0.397 

Total Degrees of Freedom 17,266  17,266 
Residual Degrees of Freedom 17,235  17,235 
Null Deviance 6,122  6,122 
Residual Deviance 4,610  4,517 
AIC value 4,674  4,631 

***p-value < 0.001, **p-value < 0.01, * p-value < 0.05, ˙ p-value < 0.1 

Supervised Learning Classification Discussions 
Using insights from clustering algorithms and unsupervised learning results, we applied 
supervised learning to classify pedestrian crashes in Tennessee into two groups: high-risk and 
low-risk crashes, based on road and environmental characteristics. Through cross-tabulation 
classification and various logistic regression models, we identified the characteristics of high-risk 
crashes. The following sub-section will elaborate on these high-risk crash characteristics, while 
subsequent sub-sections will dive deeper into the spatial and temporal visualization of these 
crashes. 

Characteristics of High-risk Crashes 
High-risk crashes are defined as the most dangerous group of crashes for pedestrians, with the 
highest chance of fatality in a pedestrian crash, based on road design and environmental factors. 
These crashes are strongly associated with non-intersection or midblock locations on straight 
roads. They frequently occur in non-residential areas and during dark conditions, often in places 



  
  

CENTER FOR PEDESTRIAN AND BICYCLIST SAFETY 
Final Report 

30 

 

with some form of lighting infrastructure. They are also common on roads with multiple lanes and 
higher speed limits, typically above 35 mph. As these crashes usually happen at midblock 
locations, they generally do not involve traffic control systems. They mostly occur on two-way 
divided roads without traffic barriers or on two-way undivided roads and rarely involve parking 
lots or private properties. These road characteristics align strongly with the road characteristics of 
arterials in the US, as depicted by several safety studies. We did not observe an association between 
higher posted speed limits and fatality in high-risk crashes. This might be because crashes with 
higher posted speed limits are predominantly classified as high-risk crashes, leading to an 
imbalance in the data. 
 
While men and women are equally represented in high-risk crashes, they predominantly involve 
non-white pedestrians, including Black pedestrians. The overrepresentation of racial minorities 
and its link with hazardous road design aligns with the findings of past studies (Haddad et al., 
2023; Roll & McNeil, 2022). Impaired pedestrians are also disproportionately represented in this 
type of crash. On the other hand, White drivers are more likely to be behind the steering wheel in 
these crashes. Conversely, we find that children are less represented in this category. A possible 
reason for their lower exposure is that these crash locations appear unsafe, leading parents to keep 
their children away from these areas. The type of vehicle involved typically is not associated with 
this type of crash. 
 
Regarding pedestrian fatality, high-risk crashes are mostly associated with dark-lighted conditions, 
straight maneuvers of vehicles at midblock locations, and non-residential areas. Although Black 
pedestrians are predominantly involved in these types of crashes, fatalities are more frequently 
associated with White pedestrians. On the other hand, child pedestrians are not only less 
represented in this type of crash but also less likely to suffer fatal outcomes. This may be due to 
the extra precautionary measures taken to protect children, even when they are exposed to such 
hazardous situations. The impact of intoxication on fatality outcomes for both pedestrians and 
drivers shows no significant difference between high-risk and low-risk crashes. 
 
The relationship between vehicle types and high-risk crashes presents interesting findings. When 
looking at overall crashes, the probability of fatality is approximately 65 percent higher when a 
pedestrian is struck by a pickup truck and about 61 percent higher when struck by an SUV, 
compared to a passenger car. However, when considering high-risk crashes and their interaction 
with vehicle types, the main effect reveals that the chances of fatality are 97 percent higher for 
pickup trucks and 101 percent higher for SUVs in low-risk crash scenarios, although such 
scenarios are rare. Conversely, the interaction term between vehicle type and high-risk crashes 
shows no clear relationship between vehicle size and fatality outcomes. One possible explanation 
is that vehicles tend to travel at higher speeds in areas prone to high-risk crashes. This increased 
speed may offset the differences in vehicle size, leading to an equal or greater transfer of kinetic 
energy during collision (Ballesteros et al., 2004). This confirms findings from Parajuli et al. that 
showed that most of increase in fatality risk in Tennessee was associated with increased fatalities 
involving passenger cars (Parajuli et al. 2023).
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Figure 10. [Top] Pedestrian crashes in Nashville: Initial labels (top-left) and final classification labels (top-right) 
[Bottom] Comparison of visible road features various streets – a) Nolensville Pike, b) Murfreesboro Pike, c) Dickerson Pike, and d) 
Gallatin Pike, Nashville, TN 
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Identification of High-Risk Streets 
After the identification of high-risk crashes, we can connect the dots and see the whole picture of 
streets across the cities that are associated with high-risk crashes. Among the 17,267 total filtered 
crashes in urban Tennessee from 2009 to 2019, 13,152 crashes were initially unlabeled while 
4,115 crashes had initial labels. Among the crashes that had pre-labels, 2092 crashes, which were 
identified as high-risk crashes based on extant literature and unsupervised learning results of this 
study, were derived from the proximity of crash locations to streets with “major arterials” labels 
(within 100 ft) as depicted in the E-TRIMS map. The E-TRIMS map relies on state agencies' 
classification of arterials. To understand the relationship between these pre-labels and finalized 
classification results, we performed a spatial visualization of pedestrian crashes across the city of 
Nashville. 

Figure 10 (top-left) is a visualization of pre-labels, with orange dots representing the “high-risk” 
crashes, while the green dots represent “low-risk” crashes. We can observe that these initial labels 
are heavily concentrated along the major urban arterials of Nashville, such as Nolensville Pike, 
Murfreesboro Pike, Dickerson Pike, and other major arterials. Figure 10 (top-right) illustrates the 
final classification of high-risk and low-risk crashes throughout the city. The new classification 
also visibly clusters high-risk crashes along the major arterials. However, there is a noticeable 
cluster of crashes along newer roads, particularly a newly formed cluster along Gallatin Pike, 
highlighted in red for clarity. This indicates that our methodology extends beyond traditional 
arterial definitions, identifying several new streets as pedestrian fatality hotspots in Nashville. 
Consequently, we can infer that these streets, especially Gallatin Pike, possess some arterial 
characteristics that are hazardous to pedestrians. 

We analyzed Google Street View for these streets to investigate further, as shown in Figure 10 
[Bottom]. Figure 10a, Figure 10b, and Figure 10c represent state-defined major arterials in 
Nashville: Nolensville Pike, Murfreesboro Pike, and Dickerson Pike, respectively. We also 
included Gallatin Pike in Figure 10d for a side-by-side comparison of visible road features. 
Referencing these four figures, we can identify the characteristics of high-risk streets for 
pedestrians. It should be noted that these streets are classified solely based on road design and 
environmental factors, excluding pedestrian, driver, and vehicle characteristics. They typically 
feature long, straight sections, multiple lanes, and wide roads with two-way turn lanes. The figures 
also reveal a lack of adequate pedestrian infrastructure, such as pedestrian crossings, signals, 
continuous sidewalks, and proper bus stop facilities for transit riders. Furthermore, the adjacent 
land use is primarily car-focused, with multiple driveways and businesses catering primarily to 
drivers. Gallatin Pike serves as a prominent example of a street with arterial characteristics, making 
it a “high-risk” street for pedestrians.  

As cities experience significant population growth and suburbanization (Tennessee State Data 
Center, 2023), we hypothesize that more streets will evolve into high-risk areas, prioritizing cars 
and potentially worsening pedestrian safety concerns in the state. Overall, the current functional 
definition of arterials is inadequate for identifying streets that are potentially dangerous for 
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pedestrians. Relying solely on state agencies' classification of arterials could result in the 
underrepresentation of high-risk crashes and overlook potential pedestrian fatality hotspots. 

Trend Visualization of High-Risk Crashes 
Over the years, pedestrian fatalities in Tennessee have increased significantly, while pedestrian 
involvement in crashes has remained relatively constant. Having identified the high-risk crashes, 
it would be interesting to examine the trend of these high-risk crashes over time and their 
relationship to the overall trend in pedestrian fatalities. To ensure a comprehensive 
representation, we normalized the 2019 figures based on historical trends, as our observations for 
2019 only extended until the end of September. Using data from Table 7. Historical crash 
involvement and fatalities in Tennessee, we calculated that both crash involvement (28.9 
percent) and pedestrian fatalities (29.5 percent) were slightly overrepresented from the start of 
October to the end of December. Crash involvement shows lower variance compared to crash 
fatalities. Therefore, we used 1/ (1 - 0.29) = 1.41 as the normalization parameter to roughly 
estimate the crash involvement and fatalities for the entirety of 2019. Figure 11 Shows the 
adjusted pedestrian fatalities in the state from 2009 to 2019. 

Table 7. Historical crash involvement and fatalities in Tennessee 

Year 

Crash Involvement  Fatal Outcomes 

Total Oct to Dec %  Total Oct to Dec % 

2009                 1,206  361 29.9  40 16 40.0 

2010                 1,252  369 29.5  52 11 21.2 

2011                 1,460  416 28.5  57 17 29.8 

2012                 1,632  435 26.7  49 13 26.5 

2013                 1,531  427 27.9  63 15 23.8 

2014                 1,557  445 28.6  63 14 22.2 

2015                 1,761  547 31.1  82 37 45.1 

2016                 1,827  491 26.9  68 19 27.9 

2017                 1,842  541 29.4  88 24 27.3 

2018                 1,825  551 30.2  101 31 30.7 

2019*                 1,374  Missing Missing  79 Missing Missing 

Average   28.9    29.5 

2019** 1,936 - -  111 - - 
* Missing Data for October to December 2019; ** Estimated Figures for 2019 
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Figure 11. Pedestrian fatality trend (normalized) in Tennessee 

 
 
 
 

 
Figure 12. Pedestrian trends for a) involvements (right) and b) fatality (left) 
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From Figure 12, we see a clear distinction in trends between high-risk and low-risk crashes. High-
risk crashes exhibit a steep increase in fatality counts (Figure 12a) and a relatively moderate rise 
in involvement counts (Figure 12b). These observations suggest that high-risk crashes, which are 
inherently more likely to result in fatalities, have been increasing over the years, leading to a 
significant rise in pedestrian fatalities. Consequently, high-risk crashes substantially contribute to 
the overall increase in the severity of pedestrian crashes in Tennessee. This finding supports the 
preliminary univariate findings by Parajuli et al., which emphasize road design features as a key 
factor in the increase of pedestrian injury severity (Parajuli et al., 2023). 
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Conclusions and Recommendations 
Using unsupervised and supervised learning, the study identified hazardous pedestrian crash 
patterns in urban Tennessee based on road and situational factors. Clustering results indicated that 
pedestrian crashes in midblock locations on higher-speed roads were the most dangerous, while 
parking lot crashes were the safest. This insight led to the training and classification of pedestrian 
crashes into low-risk and high-risk categories using a supervised learning model, which provided 
valuable insights into the identification and characteristics of high-risk crashes. The study 
methodology could be replicated in determining fatality hotspot locations and risky road sections 
for pedestrians. 
 
High-risk crashes were found to occur on wide, straight roads with higher posted speed limits, 
typically in non-intersection locations and during dark conditions. Further inspection revealed that 
these streets often lack adequate pedestrian infrastructure, such as continuous sidewalks, sufficient 
pedestrian signals, and closely spaced crosswalks. These streets are usually in non-residential areas 
and have businesses primarily catering to cars, with multiple driveways. While these streets share 
characteristics with arterials, our investigation shows that non-arterial streets with similar features 
are common in predominantly suburban areas in states like Tennessee. Consequently, relying 
solely on the functional classification of arterials to identify risky crashes may lead to the 
underrepresentation of high-risk pedestrian crashes. Moreover, design and intervention policies 
that are targeted at (or avoid) functionally classified arterials (e.g., traffic calming strategies) could 
miss important roads with elevated risk.  
 
The understanding of high-risk crashes extended beyond road design variables to include the 
relationship between demographics and these risky crashes. The classification revealed that Black 
pedestrians are more frequently exposed to high-risk crashes compared to White pedestrians, while 
White drivers are more often associated with these crashes. These findings of racial disparity are 
consistent with existing safety literature. Additionally, intoxicated pedestrians are overrepresented 
in high-risk crashes, whereas intoxicated drivers are less likely to be involved. When examining 
injury severity, we discovered some counterintuitive results. Despite higher exposure among Black 
pedestrians, White pedestrians are more likely to die in high-risk crashes. This may be due to the 
majority demographic in Tennessee being White, which is reflected in more vulnerable 
populations such as the unhoused. Furthermore, child pedestrians are both less exposed and less 
likely to die in these crashes, suggesting significant parental awareness of the issue, particularly 
on risky infrastructure. However, this also highlights a concerning issue, indicating that urban 
areas in Tennessee may not be safe for children. The study also found that while larger vehicles 
like pickup trucks and SUVs significantly increase pedestrian fatality risk in general, their impact 
is less clear in high-risk crash scenarios, possibly due to higher travel speeds in such areas 
neutralizing vehicle size effects. Future research should delve deeper into these nuances to better 
understand the interactions between demographics, vehicle types, and high-risk crash scenarios. 
 
Finally, trend analyses indicate that high-risk crashes have become more severe over the years, 
contributing to the overall increase in pedestrian fatalities in Tennessee. Suburbanization has likely 
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led to marginalized communities and minorities being increasingly overexposed to higher-speed 
suburban roads. These roads often lack adequate pedestrian infrastructure, such as continuous 
sidewalks and appropriately spaced crossings, which are costly to implement in sprawling 
suburban areas. The revelation that high-risk crashes are driving the increase in pedestrian crash 
severity in Tennessee underscores the urgent need for immediate pedestrian safety improvements, 
focusing on road design and environmental factors. 
 
Building upon our findings, we propose actionable recommendations: Begin by identifying streets 
that resemble urban arterials and consider reducing speeds, while establishing a maximum speed 
limit of 35 mph for important arterials. Often speed limit reductions do not proportionately increase 
travel times (when including signal delay). Implement road diets on wide arterials to remove two-
way turn lanes and strategically place signalized intersections at regular intervals near prominent 
businesses or transit stops. This approach shortens pedestrian crossing distances, encourages speed 
reduction, and provides additional U-turn opportunities. Install pedestrian refuge islands at road 
crossings and improve lighting and signals in high pedestrian traffic areas to enhance visibility and 
encourage safer decision-making. Finally, ensure the presence of frequent and well-lit pedestrian 
crossings, including midblock crossings, using appropriate signals to optimize visibility and 
pedestrian safety. 
 
A notable limitation of this study is its reliance solely on police crash data for road and 
environmental characteristics. Future research should broaden its scope to include additional data 
sources such as satellite imagery, detailed roadway management systems, and other 
comprehensive data sources. This would provide more detailed information on pedestrian 
infrastructure and other road characteristics not captured in the crash data. Instead of automating 
the pre-labeling process, future studies could benefit from manually labeling crashes after 
thoroughly examining them, including the crash narratives, to improve initial crash labeling. 
Additionally, future research could explore more advanced machine learning techniques, which 
have the potential to yield enhanced and robust results. 
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