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SI* (MODERN METRIC) CONVERSION FACTORS 
APPROXIMATE CONVERSIONS TO SI UNITS

Symbol When You Know Multiply By To Find Symbol 
LENGTH 

in inches 25.4 millimeters mm 
ft feet 0.305 meters m 
yd yards 0.914 meters m 
mi miles 1.61 kilometers km 

AREA 
in2 square inches 645.2 square millimeters mm2

ft2 square feet 0.093 square meters m2

yd2 square yard 0.836 square meters m2

ac acres 0.405 hectares ha 
mi2 square miles 2.59 square kilometers km2

VOLUME 
fl oz fluid ounces 29.57 milliliters mL 
gal gallons 3.785 liters L 
ft3 cubic feet 0.028 cubic meters m3 

yd3 cubic yards 0.765 cubic meters m3 

NOTE: volumes greater than 1000 L shall be shown in m3

MASS 
oz ounces 28.35 grams g
lb pounds 0.454 kilograms kg
T short tons (2000 lb) 0.907 megagrams (or "metric ton") Mg (or "t") 

TEMPERATURE (exact degrees) 
oF Fahrenheit 5 (F-32)/9 Celsius oC 

or (F-32)/1.8 
ILLUMINATION 

fc foot-candles 10.76 lux lx 
fl foot-Lamberts 3.426 candela/m2 cd/m2

FORCE and PRESSURE or STRESS 
lbf poundforce   4.45    newtons N 
lbf/in2 poundforce per square inch 6.89 kilopascals kPa 

APPROXIMATE CONVERSIONS FROM SI UNITS 
Symbol When You Know Multiply By To Find Symbol 

LENGTH
mm millimeters 0.039 inches in 
m meters 3.28 feet ft 
m meters 1.09 yards yd 
km kilometers 0.621 miles mi 

AREA 
mm2 square millimeters 0.0016 square inches in2 

m2 square meters 10.764 square feet ft2 

m2 square meters 1.195 square yards yd2 

ha hectares 2.47 acres ac 
km2 square kilometers 0.386 square miles mi2 

VOLUME 
mL milliliters 0.034 fluid ounces fl oz 
L liters 0.264 gallons gal 
m3 cubic meters 35.314 cubic feet ft3 

m3 cubic meters 1.307 cubic yards yd3 

MASS 
g grams 0.035 ounces oz
kg kilograms 2.202 pounds lb
Mg (or "t") megagrams (or "metric ton") 1.103 short tons (2000 lb) T 

TEMPERATURE (exact degrees) 
oC Celsius 1.8C+32 Fahrenheit oF 

ILLUMINATION 
lx  lux 0.0929 foot-candles fc 
cd/m2 candela/m2 0.2919 foot-Lamberts fl

FORCE and PRESSURE or STRESS 
N newtons 0.225 poundforce lbf 
kPa kilopascals 0.145 poundforce per square inch lbf/in2
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Abstract 
It is widely accepted that road traffic safety is a significant public health issue. One of the effective 
ways to improve road traffic safety is analyzing crash data to understand where traffic accidents 
occur, identify associated spatial and temporal patterns, and determine causation. In the State of 
New Mexico, locations of traffic accidents are currently visualized using a variety of static maps. 
Although these static maps are easier to create and producers can control how users view the data, 
users cannot customize these maps to meet their special needs. New maps need to be created for 
any update or modification. More importantly, these static maps are not able to visualize crash 
density information because users cannot zoom in or zoom out, and hence they cannot be used to 
identify any associated spatial and temporal patterns. Subsequently, it is challenging if not 
impossible for users to conduct additional analyses to determine the causes of traffic crashes in an 
efficient, effective, and accurate manner. To solve the problems inherent with the current static 
maps, this research project focused on exploring the utility of dynamic and interactive web 
mapping and visualization techniques to visualize and analyze traffic crash data with the aim of 
helping transportation planners, engineers, and policymakers determine the causes of traffic 
crashes and identify high-crash locations and other associated spatial and temporal patterns, and 
ultimately, achieving improved safety, enhanced resiliency, and increased efficiency for road 
users.   This was achieved exclusively with open source tools and the implementation of well-
known geospatial statistical analysis tools proven effective in traffic safety analysis. 
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Executive Summary 
Analyzing crash data is considered one of the most efficient methods to enhance road traffic safety. 
By analyzing the data, transportation professionals can better understand where traffic crashes 
occur, recognize associated patterns and trends, and develop countermeasures to prevent future 
crashes. It helps to improve understanding of the underlying causes of accidents and allows 
professionals to take the necessary steps to mitigate them.  Crash data analysis is crucial in creating 
effective road safety policies and implementing appropriate traffic enforcement strategies. 
 
The State of New Mexico currently relies on conventional and static maps to visualize the locations 
of traffic crashes.  While static maps are easier to create and allow producers to control how users 
view the data, they have limitations in terms of customization and cannot be used to visualize crash 
density information. Additionally, users cannot dynamically and interactively zoom in or zoom 
out on these maps, making it difficult to identify associated spatial and temporal patterns. That 
said, this approach is sufficient to understand and analyze the complex relationships between 
different factors that contribute to road traffic accidents, such as the behavior of drivers, road 
conditions, weather, and other environmental factors. 
 
This study aims to explore the utility of dynamic, interactive web mapping and visualization 
techniques to address the limitations of static maps. Implementing these techniques, would enable 
the creation of interactive web maps that could provide insights into traffic crash patterns, trends, 
and hotspots in a more customizable and efficient manner. In addition, these techniques can 
provide near real-time information on crash density, allowing for a more proactive approach to 
road safety management. By identifying high-crash locations and associated spatial and temporal 
patterns, transportation professionals can allocate resources more effectively and develop targeted 
interventions to reduce the occurrence of traffic crashes. The goal is to help transportation 
professionals determine the causes of traffic crashes and identify high-crash locations and other 
associated spatial and temporal patterns. Ultimately, this can lead to improved safety, enhanced 
resiliency, and increased efficiency for road users, benefiting all road users. 
 
The creation of the Crash Mapping Prototype required a diverse range of technical skills and tools, 
including proficiency in different programming languages and relational databases. Through the 
application of these technologies, an interactive web mapping tool was designed and developed to 
provide users with a visual representation of traffic crash data collected within the state of New 
Mexico. The use of these tools enabled the creation of a customized and efficient application that 
allows for more in-depth and interactive analysis of traffic crash data. 
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Introduction 
It is generally acknowledged that road traffic safety is a serious public health issue. According to 
the World Health Organization (WHO), motor vehicle crashes kill more than 1 million people and 
seriously injure approximately 20 to 50 million people around the world each year, affecting all 
road users such as vehicle drivers and passengers, pedestrians, bicyclists, and transit users (World 
Health Organization, 2023; U.S. Department of Transportation, 2017). In the United States, 
approximately 37,000 people on average are killed and an estimated 2.3 million injured each year 
in motor vehicle accidents over the last ten years (U.S. Department of Transportation, 2017). 
Transportation agencies, legislators, and advocacy organizations in the United States have been 
prioritizing efforts to improve road safety through a variety of strategies, such as road safety audits, 
speed management, geometric design, and safety performance measurement and evaluation, 
among others, however, there is still an ongoing commitment to prioritize and improve road safety 
even further.  
 
According to the latest statistics from the National Highway Traffic Safety Administration 
(NHTSA) of the U.S. Department of Transportation, the State of New Mexico has the fifth highest 
motor-vehicle fatality rate in the United States at 18.8 fatalities per 100,000 residents (67.0% 
higher than the national average). In addition, New Mexico has the highest pedestrian fatality rate 
in the United States at 3.8 pedestrian fatalities per 100,000 residents (89.4% higher than the 
national average) (National Highway Traffic Safety Administration, 2021). Moreover, New 
Mexico is often ranked among the most dangerous states for bicyclists (4-6). Subsequently, there 
is a significant need for improved traffic safety in the State of New Mexico.  The Federal Highway 
Administration’s (FHWA’s) Focused Approach to Safety Program has designated the State of New 
Mexico as one of fifteen “Pedestrian Bicycle Safety Focus States” and the City of Albuquerque, 
New Mexico’s largest city with 26.1% of the state’s population, as one of twenty-six “Continuing 
Safety Focus Cities 
 
Analyzing crash data is an effective method for improving road safety. Crash data helps to expound 
the underlying causes of crashes, such as driver error, weather conditions, vehicle malfunctions, 
or infrastructure deficiencies. With this information, transportation professionals can develop more 
comprehensive and practical safety programs that address the root causes of crashes and help to 
reduce their frequency and severity. Additionally, by examining the patterns and trends present in 
crash data, transportation experts can identify locations that are particularly prone to crashes, such 
as busy intersections or stretches of highways with sharp turns. With this knowledge, they can 
practice specific safety measures, such as adding traffic signals, improving road signage and street 
lighting, or making changes to the road surface to proactively help prevent crashes from occurring 
in the first place. 
 
Among all the factors involved, understanding where traffic crashes occur and identifying 
associated spatial and temporal patterns are crucial first steps in implementing effective road safety 
management and allocating appropriate traffic enforcement. Currently, the adopted method for 
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visualizing where traffic accidents occur in the State of New Mexico uses a variety of static maps, 
primarily in PDF format (see Figure 1). Although these maps are easy to create and producers can 
control how users view the data, users cannot customize these maps to meet their special needs. 
New maps need to be created for any update or modification and once distributed, it becomes 
impossible to update these maps. More importantly, these static maps are not able to visualize 
crash density information because users are unable to zoom in or out and view different areas at 
varying scales, requiring separate maps for each level of detail. As a result, these maps fail to 
illustrate spatial and temporal patterns associated with crashes. Additionally, to maintain clarity 
and focus, the inclusion of data layers must be limited. Consequently, users face significant 
challenges, if not impossibilities, when attempting to efficiently, effectively, and accurately 
analyze the causes of traffic crashes. 
 

 
Figure 1. A static traffic map in PDF format (source: Geospatial and Population Studies at the 
University of New Mexico). 

 
To prevent traffic crashes and ultimately reduce injuries and fatalities, particularly those involving 
pedestrians and bicyclists, it is imperative to perform a comprehensive analysis of recorded data 
to identify patterns, trends, and key risk factors that contribute to these crashes. However, 
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analyzing recorded data is challenging because crashes typically involve multiple factors such as 
time, roadway and weather conditions, driver maneuvers, user characteristics, and varying modes 
and severities. While there has been a steady march of progress in the field of traffic safety analysis 
over the last several decades, which leads to the development of approaches ranging from safety 
performance functions to more complex statistical models that account for underlying spatial and 
temporal correlation derived from the shared effects of unobserved factors, many of those 
methodologies are complex and out of reach for the majority of small to medium transportation 
agencies and community organizations. In contrast, conventional tools such as static maps or 
online crash portals lack the dynamic and interactive capabilities to effectively communicate 
comprehensive crash trends across different scales and relevant variables, failing to provide a 
holistic understanding of the underlying patterns and causations. To address these aforementioned 
limitations, it is crucial to explore and implement advanced, dynamic, and interactive web-based 
mapping and visualization techniques for visualizing and analyzing recorded traffic crash data. 
 
Users of the web application will be able to visualize maps of hot/cold spots and crash density and 
by providing easy-to-understand visual representations of crash data, users can gain a better 
understanding of where and how crashes are occurring and can use this information to advocate 
for safety improvements in their local area. Application programming interfaces (APIs) of the 
developed web application will be made available to transportation agencies at all levels (e.g., 
federal, state, local, and tribal). This will provide them with the means to create their own 
visualization and analysis web applications, diagnose their traffic safety issues, implement 
evidence-based strategies, and develop their own safety culture. 

Objectives 
To solve the problems inherent with current static maps and proprietary web portals, this proposed 
project will be focused on exploring the utility of dynamic, interactive, and free programming 
techniques to visualize and analyze traffic crash data. Techniques that will be explored and 
implemented with the portal include, but are not limited to, spatial data management and 
visualization, spatial analysis, and internet mapping. Many spatial analysis tools will be 
investigated and developed for the proposed web portal. These spatial analysis tools will be 
developed with the Python programming language and Geospatial Data Abstraction Library 
(GDAL). Specifically, these spatial analysis tools include point pattern analysis, High/Low 
Clustering (Getis-ord General G), Hot/Cold Spot Analysis (Getis-ord Gi*), Global and Local 
Moran’s I, and Kernel Density. Point pattern analysis will be leveraged to identify the central 
tendency, dispersion, and directional trends of crashes in an area of interest (AOI). High/Low 
Clustering will be leveraged to examine if a specific attribute associated with traffic crashes 
exhibits a pattern of either high values or low values being clustered. Hot/Cold Spot Analysis will 
be leveraged to identify statistically significant hot spots or colds spots of a specific traffic crash 
typology. Global and Local Moran’s I will be leveraged to examine if traffic crashes are spatially 
auto-correlated on a global or local scale. Kernel Density will be leveraged to examine the density 
of traffic crashes in a neighborhood around those crashes. Noting that it is likely that not all these 
tools will be used in the final version of the web portal, but input from stakeholders will be sought 
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to determine which tools should be incorporated in the final web portal. The web portal, spatial 
analysis tools, and all associated APIs will be developed in a Python framework (e.g., Flask). The 
portal’s web applications graphical user interface (GUI) will be developed with Hypertext Markup 
Language (HTML), Cascading Style Sheets (CSS), JavaScript, and Python. The backend 
programming interface (i.e., APIs) will be developed with the Python programming language. 
 
The expected outcomes of this project are a web portal for crash visualization and analysis (of 
interest to users within New Mexico) and the APIs for further adoption, development, and 
innovation of additional tools (of interest to users across the United States). A web mapping and 
analysis portal will be developed to enable: (1) online visualization – displaying the locations and 
other associated attributes of traffic crashes; (2) online analytics – analyzing and displaying crash 
hot/cold spots, crash density, and crash counts in an AOI; and (3) map export – downloading the 
hot/cold spots maps and crash density maps. APIs for the proposed web portal’s applications will 
be developed and freely shared with transportation agencies and community organizations at all 
levels (e.g., local, state, federal, and tribal) to enable them to develop similar web applications, 
further spreading a culture of safety. The proposed project also aims to produce two peer-reviewed 
journal articles. The first journal article will delve into the architecture and design of the web 
mapping and analysis portal developed as part of the project. The second journal article will shift 
the focus towards discussing the practical utility and benefits of the web mapping and analysis 
portal. A guidebook will be developed to provide detailed instructions on utilizing the web 
mapping and analysis portal, along with its associated APIs, which will be focused on workforce 
development and technology transfer (T2). The project team will follow a comprehensive program 
to disseminate the project outcomes. The project’s publicity program includes: (1) developing a 
project website; (2) disseminating through peer-exchange network (e.g., journals, webinars, 
conferences, etc.); (3) hosting training workshops to educate prospective users (both inside and 
outside New Mexico) on the use of the web portal and its APIs for workforce development and 
T2; (4) social and public media; and (5) disseminating the developed web portal and its APIs 
through the New Mexico Local Technical Assistance Program (NM LTAP) Center, which has 
connections with all communities and government agencies across New Mexico. 
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Literature Review 
Road Traffic Safety 
The United States held a prominent position in traffic safety throughout most of the 20th century; 
however, during recent decades, this has not been the case any longer (7). By 2002, the United 
States had dropped to 16th place in deaths per registered vehicle and 10th place in deaths per 
distance traveled (Evans, 2004). In recent decades, nearly every high-income country has made 
more rapid progress in reducing road traffic deaths and death rates per kilometer of vehicle travel 
compared to the United States. Consequently, the United States can no longer claim a high rank in 
road safety on a global scale. Between 1994 and 2004, road fatalities in the United States increased 
by 5%, reaching 42,636 compared to 40,716. In contrast, most other developed countries witnessed 
substantial reductions in fatalities during the same period. In 2003, speeding-related crashes 
accounted for the deaths of 13,380 individuals (31.4% of all road traffic fatalities) in the United 
States (Evans, 2003). The growing population and number of vehicles contribute to an increase in 
road accidents and a significant loss of lives each year. To prevent road crashes in the United 
States, effective measures need to be implemented across all domains, including engineering, 
education, and enforcement. However, one significant barrier to producing these measures lies in 
the difficulty of analyzing the contributions of road crashes. To address this, map-based crash data 
system based on available spatial data are proposed as a potential solution to enhance the 
comprehension of road accident data and facilitate the development of better preventive measures 
(Leelakajonjit, 2012).  

Traffic safety analysis utilizing Geographic Information Systems (GIS) has emerged as a critical 
tool for understanding and mitigating road accidents and pedestrian fatalities. GIS technology 
allows researchers and policymakers to analyze spatial data related to traffic incidents, identify 
high-risk areas, and implement targeted interventions to improve safety.  

Traditionally, traffic safety analysis relied on manual methods and basic statistical analyses. 
However, the integration of GIS technology has revolutionized the field by enabling spatial 
analysis of traffic data. GIS software is commonly used for processing and visualizing spatial data 
related to crashes, road infrastructure, traffic flow, and environmental factors. These tools allow 
researchers to perform spatial queries, hotspot analysis, network analysis, and spatial interpolation 
to identify patterns and correlations in traffic safety data. Proprietary GIS software platforms offer 
intuitive graphical user interfaces (GUIs) that facilitate these processes. A wide range of built in 
tools can streamline common traffic safety analysis tasks and workflows. While proprietary GIS 
software offers comprehensive functionality and support, it typically involves costly licensing fees 
and ongoing maintenance costs. For organizations with limited budgets open-source alternatives 
present an attractive option. 
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Tools 
Python is a high-level programming language known for its simplicity and versatility. It's widely 
used across various industries and disciplines, including data science, web development, 
automation, scientific computing, and geospatial analysis (Shamroukh & Aziz, 2023). Python's 
popularity stems from its readability, extensive standard library, and large ecosystem of third-party 
libraries and frameworks. 

GDAL is an open-source library for reading and writing raster and vector geospatial data formats. 
Developed by the Open Source Geospatial Foundation (OSGeo), GDAL provides a set of tools 
and utilities for working with geospatial data in various formats such as GeoTIFF, Shapefile, and 
GeoJSON. GDAL supports data manipulation, transformation, reprojection, and analysis, making 
it a fundamental component of many geospatial workflows and applications. 

In the context of traffic safety analysis, Python and GDAL are commonly used together to perform 
spatial analysis, data processing, and automation tasks (Watson & Ryan, 2024). Python provides 
a flexible and powerful programming environment, while GDAL offers a comprehensive set of 
geospatial tools for working with traffic-related datasets such as crash data and road networks. By 
leveraging Python's scripting capabilities and GDAL's geospatial functionality, researchers can 
develop custom workflows to analyze traffic patterns, identify high-risk areas, and generate 
actionable insights for improving road safety. 

Static vs. Interactive Maps 
Static maps, commonly produced using GIS software, provide a snapshot of traffic safety data at 
a specific point in time. They offer several advantages, including simplicity of creation, ease of 
distribution, and compatibility with various devices. Static maps are useful for presenting 
aggregated data, such as crash density maps or spatial distributions of pedestrian fatalities. 
However, they have limitations in terms of interactivity and dynamic visualization. Static maps 
may not effectively convey temporal trends or allow users to explore data interactively, limiting 
their utility for in-depth analysis. 

Interactive web maps, powered by GIS technology and web-based mapping platforms like Google 
Maps API, Leaflet, and OpenLayers, offer dynamic visualization and user interaction capabilities 
(Lindell, 2020). They allow users to explore traffic safety data in real-time, customize map layers, 
and perform on-the-fly spatial analysis. Interactive web maps are particularly effective for 
presenting complex spatial relationships, temporal patterns, and interactive dashboards. They 
enhance user engagement and facilitate data-driven decision-making. However, developing and 
maintaining interactive web maps requires technical expertise, and they may be resource-intensive 
in terms of data processing and server requirements. Additionally, user experience may vary 
depending on internet connectivity and device compatibility. 
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Geospatial Analysis 
Several approaches have been established in the literature for geospatial crash analysis. These 
spatial statistics methods are employed to comprehend the features of both the spatial and temporal 
distribution of road traffic accidents (Alam et al., 2023). Spatial statistics for spatial autocorrelation 
analysis can be divided into global and local indices. A global index analysis enables 
understanding the distribution of incidents across the network, distinguishing between clustered, 
scattered, or randomly distributed data. A local index analysis is employed to precisely identify 
the location and size of each detected cluster (Cheng et al., 2019). Global indices include Global 
Moran’s I and Getis-Ord G, while local indices include Anselin Moran’s I, Kernel Density 
Estimation, and Getis Ord Gi*.  

Global Indices 
Global Moran's I is a statistical measure used in spatial analysis to assess the overall spatial 
autocorrelation or the degree of spatial clustering or dispersion in a dataset (Shahzad, 2020). 
Global Moran’s I is represented as 
 

𝐼𝐼 =
𝑁𝑁𝛴𝛴𝑖𝑖=1𝑁𝑁 𝛴𝛴𝑗𝑗=1𝑁𝑁 𝑤𝑤𝑖𝑖𝑖𝑖(𝑋𝑋𝑖𝑖 − 𝑋𝑋)(𝑋𝑋𝑋𝑋 − 𝑋𝑋)⬚

(𝛴𝛴𝑖𝑖≠1𝑁𝑁 𝛴𝛴𝑗𝑗=1𝑁𝑁 𝑤𝑤𝑖𝑖𝑖𝑖)(𝛴𝛴𝑖𝑖=1(𝑋𝑋𝑖𝑖 − 𝑋𝑋)2)
 

 
The null hypothesis of Global Moran’s I states the attribute being analyzed is randomly distributed 
among the features in the study area. It quantifies the similarity between attribute values at different 
locations across a geographic area, taking into account both the values themselves and their spatial 
relationships. Global Moran's I ranges from -1 to 1, where values close to 1 indicate strong positive 
spatial autocorrelation (clustering), values near -1 indicate strong negative spatial autocorrelation 
(dispersion), and values around 0 indicate spatial randomness. The statistical test excels in 
measuring spatial clustering when both high and low attribute values cluster together and is useful 
to measure broad trends in accidents. Global Moran's I has been increasingly utilized in traffic 
safety and crash severity research to identify and analyze the spatial patterns and hotspots of road 
crashes (Zandi et al., 2022). This spatial autocorrelation measure helps in understanding how crash 
severity is distributed across different regions and is pivotal for developing targeted interventions 
for enhancing road safety. 
 
The Getis-Ord General Index, also known as the Gi statistic or Getis-Ord General G statistic, 
measures the degree of clustering for either high or low values. Its conceptual foundation was 
initially laid by Getis and Ord in 1992, with subsequent refinement from Ord and Getis in 1995. 
Originally rooted in point pattern analysis, its earliest iteration comprised a ratio denoting the count 
of observations within a specified range of a point against the total count of points. However, in 
its broader manifestation, the index is employed in appraising values at neighboring locations, as 
delineated by spatial weights.  
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Getis-Ord General entails computing the ratio of the weighted average of values across 
neighboring locations to the summation of all values, including the value at the focal location (xi). 
The global equation is represented as: 
 

𝐺𝐺 =
𝛴𝛴𝑖𝑖𝛴𝛴𝑗𝑗𝑤𝑤𝑖𝑖𝑖𝑖(𝑋𝑋𝑖𝑖𝑋𝑋𝑗𝑗)
𝛴𝛴𝑖𝑖𝛴𝛴𝑗𝑗(𝑋𝑋𝑖𝑖𝛴𝛴𝑗𝑗)

 

 
The statistic is most appropriate when data have a fairly even distribution and analysis is looking 
for unexpected spatial spikes of high or low values. However, it's important to note that in 
situations where both high and low values exhibit clustering tendencies, they might counterbalance 
each other, thus mitigating the effectiveness of this tool. The null hypothesis states that there is no 
spatial clustering of feature values. Consequently, upon obtaining a small and statistically 
significant p-value from the analysis, the null hypothesis is rejected. The sign of the z-score 
assumes significance in this context. A positive z-score is indicative of clustered high attribute 
values within the study area. Conversely, a negative z-score signifies the clustering of low attribute 
values within the study area. A z-score near zero indicates no observed clustering of high or low 
values. 
 
Getis-Ord General is used in traffic safety studies to identify hotspots and low-risk areas for traffic 
crashes. This statistic is commonly applied in studies aiming to determine high-risk areas and 
spatially analyze traffic crashes resulting in fatalities. For example, Moradi et al. (2016) utilized 
Getis-Ord G to identify hotspots and low-risk areas for traffic crashes resulting in pedestrian deaths 
in Tehran. Similarly, Requia et al. (2015) employed Getis-Ord General to characterize spatial 
patterns of vehicle emissions along main traffic routes in the Federal District of Brazil. Getis-Ord 
General was applied in a study of road safety where the statistic combined with crash rate identified 
significant hot spots of traffic accidents on specified road segments (Berhanu et al., 2023). 
Additionally, the Getis-Ord method's application underscored its utility in validating hotspot 
identification and enhancing the accuracy and reliability of road traffic accident analysis (Berhanu 
et al., 2023). 
 
While both indices share similarities, they diverge fundamentally in their calculation approaches. 
Moran's I evaluates spatial autocorrelation by comparing the value of each feature with those of 
neighboring features, computing the average of the values in the neighborhood while excluding 
the reference or core feature (Mohammed et al., 2023). This index aims to determine whether 
similar values tend to be proximate within the study area. Conversely, the Getis-Ord General 
calculates the average based on all features in the neighborhood, including the reference feature. 
It assesses whether a particular feature exhibits significantly high or low values compared to its 
neighboring features, thus identifying local clustering (Bombom et al., 2022). In interpretation, 
Moran's Index identifies clusters based on similarity within neighborhoods, with a high positive 
index indicating clustering of high values and a low negative index suggesting clustering of low 
values. Conversely, the Getis-Ord Index highlights significant hot spots or cold spots in the dataset, 
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with a high positive index indicating a hot spot where the feature and its neighbors have 
significantly high values compared to the rest of the dataset.  

Local Indices 
Employed with a set of weighted features, the Anselin Local Moran's I statistic detects significant 
hot spots, cold spots, and spatial outliers, revealing local variations in spatial patterns (Anselin, 
1995). It measures the degree of spatial autocorrelation in a local context and is sensitive to spatial 
outliers within the data, identifying areas where a particular value is significantly higher or lower 
than its neighbors. This sensitivity provides insights into localized patterns of similarity or 
dissimilarity, making it particularly useful for identifying spatial clusters and outliers within a 
dataset. The Local Moran’s I statistic is expressed as: 
 

𝐼𝐼𝑖𝑖 =
𝑥𝑥𝑖𝑖 − 𝑋𝑋
𝑆𝑆𝑖𝑖2

� 𝑤𝑤𝑖𝑖,𝑗𝑗(𝑥𝑥𝑖𝑖 − 𝑋𝑋�
𝑛𝑛

𝑗𝑗=1,𝑗𝑗≠𝑖𝑖

) 

Where: 

𝑆𝑆𝑖𝑖2 =
∑ 𝑤𝑤𝑖𝑖,𝑗𝑗(𝑥𝑥𝑗𝑗 − 𝑋𝑋�𝑛𝑛
𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 )

𝑛𝑛 − 1
 

 
𝑥𝑥𝑖𝑖 is the value of an attribute for local feature 𝑖𝑖, 𝑋𝑋 is the mean of the corresponding attribute, 𝑤𝑤𝑖𝑖𝑖𝑖 
is the spatial weight between feature 𝑖𝑖 and its neighbor 𝑗𝑗, 𝑥𝑥𝑗𝑗 is the value of an attribute for local 
feature 𝑗𝑗 and 𝑛𝑛 is the total number of features.  
 
After computing Local Moran's I for each feature, a map or list of values is generated, with 
interpretation based on both sign and magnitude. Positive values denote spatial clustering, 
indicating that features with similar values tend to be close together, while negative values signify 
dispersion, where features with dissimilar values cluster (Blazquez et al., 2020). Values near zero 
suggest randomness or spatial independence. Significance testing, often done through permutation 
tests, helps determine if observed spatial patterns are unlikely to have occurred by random chance. 

To assess statistical significance, z scores of local Moran’s I at each observation can be calculated. 
A large positive z score (> +1.96) suggests significant similarity among observations and their 
neighbors, forming spatial clusters of either high or low values. Conversely, a large negative z 
score (< -1.96) indicates significant dissimilarity, identifying spatial outliers. 

Local Moran’s I has been employed in numerous traffic-related spatial studies. Mohaymany et al. 
(2017) utilized Moran's I in developing crash prediction models based on Traffic Analysis Zone 
(TAZ)-level crashes in Mashhad, Iran. The study found significant Moran's I values, indicating 
spatial autocorrelation in crash frequencies within the TAZs. Additionally, the study demonstrated 
the reliability of spatial models over conventional Generalized Linear Models (GLMs) by 
analyzing residuals using Moran's I. An increase in population in Turkey has resulted in an increase 
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in the number of vehicles on the road and the number of resulting traffic accidents (Haybat et al., 
2022). A study completed in the five central districts of Bursa, Turkey utilized Local Moran’s I to 
find that only some areas showed statistically significant clustering of traffic accidents in relation 
to surrounding highways which also had high-clustering (Haybat et al., 2022). In their 2014 study, 
Chaney and Kim analyzed the spatial distribution of bicycle collisions in Cincinnati, Ohio, 
employing both global and local Moran's I statistics. Their findings revealed substantial clustering 
of these accidents in the downtown and southwest regions of the city. The authors concluded that 
out of the 51 neighborhoods examined, 10 exhibited a significant clustering effect. In another study 
completed in the Maule region of Chile, researchers employed the local Moran's I index to pinpoint 
statistically significant clustering of high bicycle crash-related attribute values, specifically 
focusing on High-High (HH) clusters to identify zones with elevated crash risk (Blazquez et al., 
2020). 
 
Kernel Density Estimation (KDE) is a widely recognized technique that creates a smooth, 
continuous surface to depict spatial patterns, effectively addressing data scarcity by interpolating 
a discrete density surface. The process involves calculating the density of events at each point, 
adjusted for the distance to each event, thereby generating a continuous risk map. 

The fundamental equation for KDE is: 
 

𝑓𝑓(𝑥𝑥) =
1
𝑛𝑛ℎ

𝛴𝛴𝑖𝑖=1𝑛𝑛 𝐾𝐾(𝑥𝑥 − 𝑥𝑥𝑖𝑖)
ℎ

 

Here, 𝑥𝑥𝑖𝑖 represents the value of the variable 𝑥𝑥 at location 𝑖𝑖, 𝑛𝑛 indicates the number of locations, ℎ  
the search radius or bandwidth, and 𝐾𝐾 the kernel function, which adjusts based on distance and 
bandwidth, as detailed by Silverman (2018). 

Despite the variety of kernel functions available, such as Gaussian, Quartic, and Triangular, studies 
like those by Yu et al. (2014) suggest that the choice of kernel function has minimal impact on 
outcomes. However, the selection of bandwidth is crucial, significantly influencing results, with 
no perfect method for its determination.  

KDE is particularly effective in identifying areas with high occurrences of traffic accidents. It 
divides the study area into cells, overlays a symmetrical, curved surface on each accident location, 
and aggregates these values within a given radius to estimate density. The density is highest at the 
accident location and decreases with distance, reflecting a distance decay effect. 

Selecting the right grid size and bandwidth is vital for accurate results. A narrow bandwidth can 
reveal local fluctuations, useful for detailed analyses, while a larger bandwidth smooths out 
variations, providing a general overview. The choice depends on factors such as computational 
resources, sample size, and the nature of the data analyzed. 
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KDE is a widely used method in traffic safety studies to estimate the density of spatial point events 
such as traffic accidents. Xie et al. (2008) introduced a network KDE approach to estimate the 
density of traffic accidents, considering the impacts of different kernel functions, lixel lengths, and 
search bandwidths. Erdogan et al. (2008) developed a GIS-aided traffic accident analysis system 
to transform textual data into tabular form and georeference them onto highways for the 
management of accident analysis and identification of hot spots. Anderson (2009) utilized GIS and 
KDE to study the spatial patterns of injury-related road accidents in London, UK, and created a 
classification of road accident hotspots using clustering methodology. Mohaymany et al. (2013) 
proposed a GIS-based method for detecting high-crash-risk road segments using network KDE, 
which helps traffic engineers and safety specialists identify segments requiring more safety 
attention. Nie et al. (2015) focused on detecting spatial cluster patterns and riskier road segments 
of traffic crashes in Wuhan, China, using a network-constrained integrated method combining 
density estimation and spatial autocorrelation. Lee et al. (2019) incorporated crash severity into 
hot spot analysis to enable more informed decision-making regarding highway safety. Kazmi et 
al. (2020) suggested the use of KDE technique and GIS technology to automatically identify 
accident hotspots in the UK, emphasizing the increasing research interest in integrating GIS for 
accident analysis and safety management. Audu et al. (2021) applied Geographic Information 
System (GIS) as an intelligent system for emergency responses in road traffic accidents in Ibadan, 
utilizing spatial and non-spatial data to determine dynamic distance variations for optimal route 
planning. Overall, the integration of KDE with GIS technology has proven to be valuable in 
analyzing traffic accidents, identifying hotspots, and improving road safety measures. 
 
The Getis-Ord 𝐺𝐺𝐺𝐺∗ statistic is a local measure of spatial autocorrelation designed for identifying 
spatial clusters or hot spots and cold spots within a dataset. Unlike global measures that summarize 
spatial autocorrelation with a single value for the entire dataset, 𝐺𝐺𝐺𝐺∗ provides individual values for 
each location, allowing the detection of localized patterns. This statistic is calculated by comparing 
the sum of values within a defined neighborhood of each feature, including the feature’s own value, 
to the overall mean of the dataset. This comparison helps determine whether the area exhibits a 
higher or lower concentration of a particular characteristic relative to the dataset as a whole. The 
outcome of the 𝐺𝐺𝐺𝐺∗ statistic is usually presented as a z-score, which measures how many standard 
deviations the local sum is from the expected value under the assumption of spatial randomness. 
A high positive z-score indicates a hot spot, where high values cluster, whereas a high negative z-
score points to a cold spot, signaling a cluster of low values. Additionally, a p-value is calculated 
to assess the significance of the z-score, making 𝐺𝐺𝐺𝐺∗ a powerful tool in fields like epidemiology, 
crime analysis, and environmental studies, where understanding geographical distribution and 
clustering of data is crucial. 
 
The general equation of Getis Ord Gi* is expressed as shown below, where 𝑥𝑥𝑖𝑖 is the attribute value 
for feature 𝑗𝑗, 𝑤𝑤𝑖𝑖𝑖𝑖 is the spatial weight between feature 𝑖𝑖 and 𝑗𝑗, indicating the spatial relationship or 
proximity. This weight is often 0 if 𝑗𝑗 is outside the neighborhood of 𝑖𝑖. 𝑋𝑋 is the mean of all attribute 
values of 𝑥𝑥𝑗𝑗, 𝜎𝜎 is the standard   
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𝐺𝐺𝑖𝑖∗ =
𝛴𝛴𝑗𝑗=1𝑛𝑛 𝑤𝑤𝑖𝑖𝑖𝑖𝑥𝑥𝑗𝑗 − 𝑋𝑋𝛴𝛴𝑗𝑗=1𝑛𝑛 𝑤𝑤𝑖𝑖𝑖𝑖

𝜎𝜎�[
𝑛𝑛𝛴𝛴𝑗𝑗=1𝑛𝑛 𝑤𝑤𝑖𝑖𝑖𝑖2 − (𝛴𝛴𝑗𝑗=1𝑛𝑛 𝑤𝑤𝑖𝑖𝑖𝑖)2

𝑛𝑛 − 1

 

 
Spatial analysis techniques such as Getis-Ord Gi* have been widely used in traffic safety studies 
to identify hotspots and patterns of road accidents. Nie et al. (2015) utilized a network-constrained 
integrated method to detect spatial cluster patterns and identify riskier road segments of traffic 
crashes in Wuhan, China. Soltani et al. (2017) explored spatial autocorrelation of traffic crashes 
based on severity at the traffic analysis zonal level in urban environments. Additionally, Hazaymeh 
et al. (2022) conducted a spatiotemporal analysis of traffic accident hotspots in the Irbid 
Governorate, Jordan, using the Getis-Ord Gi* technique within a GIS environment. Furthermore, 
Jackson et al. (2016) focused on rainfall impacts on traffic safety by examining the temporal and 
spatial distribution of rain-related fatal crashes in Texas. Rahman et al. (2018) analyzed road traffic 
accident fatalities in Bangladesh through a spatio-temporal characterization of fatality rates, 
integrating newspaper accounts and gridded population data. Mohebbi et al. (2019) investigated 
the impacts of dust storms on freeway safety and operations in Arizona using a modeling approach. 
Achu et al. (2019) conducted a spatio-temporal analysis of road accident incidents in Thrissur 
district, Kerala, India, using geospatial tools to delineate hotspots. Lastly, Saadat et al. (2019) 
focused on spatial analysis of driving accidents leading to deaths related to motorcyclists in 
Tehran. Overall, the use of spatial analysis techniques such as Getis-Ord Gi* has proven to be 
valuable in identifying hotspots, patterns, and riskier road segments in traffic safety studies, 
contributing to the development of effective safety countermeasures and policies. 
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Data and Methodology 
Data and Storage 
The project utilizes a point dataset of vehicle crashes collected by the New Mexico Department of 
Transportation (NMDOT). The data, ranging from 2012 to 2021, was provided in a Comma 
Separated Value (CSV) format, and contained coordinates in both the Geographic Coordinate 
System (GCS) and the Projected Coordinate System (PCS) Universal Transverse Mercator (UTM) 
Zone 13N. To prepare the data for use by the analysis tools and web application, a series of 
preprocessing steps were necessary. This included data normalization and the omission of 
irrelevant data before ingestion into a geospatially enabled database. There were exactly 421,765 
usable data points that were extracted from the file with each year containing between 37,000 and 
47,000 data points.  
 
After carefully reviewing the CSV data, the following list of attributes was determined to be the 
most relevant to use in the tool calculations. 
 
Table 1. Crash data fields used in geospatial analysis tools. 

Data Field ID Data Field Name 
1 WHETHER ALCOHOL INVOLVED OR NOT 
2 CRASH SEVERITY 
3 DAY OF WEEK 
4 NUMBER OF PEOPLE KILLED IN CRASH 
5 NUMBER OF PEOPLE WITH INCAPACITATING INJURIES (CLASS A) IN CRASH 
6 NUMBER OF PEOPLE WITH VISIBLE INJURIES (CLASS B) IN CRASH 
7 NUMBER OF PEOPLE WITH POSSIBLE INJURIES (CLASS C) IN CRASH 
8 NUMBER OF PEOPLE INJURED (CLASS A+B+C) IN CRASH 
9 NUMBER OF PEOPLE NOT INJURED (CLASS O) IN CRASH 
10 NUMBER OF VEHICLES, BICYCLES, AND PEDESTRIANS INVOLVED 
11 NUMBER OF PEOPLE IN MOTOR VEHICLES 
12 NUMBER OF PEOPLE NOT IN MOTOR VEHICLES 
13 NUMBER OF MOTOR VEHICLES INVOLVED 
14 TOTAL NUMBER OF PEOPLE IN CRASH 

 
The attributes Day Of Week, Alcohol Involvement, and Crash Severity all required conversion from 
categorical to numerical data to enable their utilization in tool calculations. Day Of Week was 
converted from a string data type, the name of the day (e.g. ‘Monday’, ‘Tuesday’, etc.), to integer 
values of one through seven. Alcohol Involvement was converted from string values ‘No’, ‘Not 
Involved’, ‘Yes’, and ‘Involved’ to Boolean values True and False. Lastly, Crash Severity was 
converted from string values ‘Property Damage Only Crash’, ‘Injury Crash’, and ‘Fatal Crash’ 
to integer values 1, 2, and 3 respectively. Other categorical data was identified to be useful, such 
as Lighting and Weather, but requires further investigation and collaboration with the DOT to 
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determine a meaningful numeric scale. Additionally, some data points were excluded due to a lack 
of spatial reference or missing attribute data required for meaningful calculations. 
 
Once the data was correctly formatted, it was inserted into a PostgreSQL database. The 
PostgreSQL Database Management System (DBMS) was chosen to store the data as it is a widely 
used database with extensive documentation and can leverage the PostGIS extension, designed for 
storing and querying geospatial data. The data was inserted using the Python SQLAlchemy library, 
a powerful SQL query toolkit, which allows us to define the database schema in code and enables 
programmatic database interactions. These tools not only integrated well into our development 
workflow but also ensured data standardization, efficient retrieval and manipulation of large 
datasets, and the flexibility to scale and adapt the database schema as needed (Elmasri & Navathe, 
2015). 
 

 
Figure 2. Depicts an overview of the normalization process when reading from a CSV.  The 
figure illustrates how the categorical data is converted to numerical data for use in 
calculations before inserting into the database. 

 
Data utilized in this research can be accessed directly from the NMDOT website. At the time of 
writing the request form is available at the following address:  https://www.dot.nm.gov/planning-
research-multimodal-and-safety/modal/traffic-safety/traffic-records/. 
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Web Portal 
The web portal is a Graphic User Interface (GUI) that is comprised of a web map and several 
analysis tools that were developed to allow users to access and analyze the yearly crash data 
collected in New Mexico through an accessible web interface. The portal is built using JavaScript, 
HTML, and CSS programming languages and utilizes OpenLayers’ open-source libraries to 
integrate mapping functionality seamlessly. OpenLayers was chosen for its compatibility with a 
wide range of spatial data formats and its flexibility to customize map styling and functionality. 
When accessing the web portal, the user is presented with a year select box, tools for querying, 
and a map with a hexbin layer summarizing the density of crashes for the first year in the dataset. 
These elements serve as inputs and outputs for interacting with the tools on the server. When a 
user runs a tool, the web portal generates a JavaScript Object Notation (JSON) object with the 
arguments for the tool and makes a request to the server. This hands off the processing task to the 
API which passes the same function arguments from the web portal to the corresponding tool 
functions, rather than running the process locally on the user’s machine. This approach ensures 
consistent processing and outputs across all client environments and eliminates the need for users 
to own high-performance equipment to run the tools effectively (Kulawiak et al., 2019). 

Application Programming Interface (API) 
The API is the intermediary between the web portal, the database, and various functions and 
modules comprising the system. The API was developed using Python Flask, a micro web 
framework providing a robust foundation for web development. Flask was selected as the base for 
our API because of its simplicity, flexibility, and extensive documentation, making it ideal for 
rapid web development using the Representational State Transfer (REST) architectural software 
model. This model enables a user’s web browser to send a request to the server, the server 
processes the request, and a server-generated response is returned to the browser. For example, 
when a user loads the main page a GET request is sent to the server to fetch the root endpoint 
(crash-mapping.edacnm.org/). The server then processes the request and returns a response with 
the data to render the page. By adhering to the REST principles, the API offers a standardized 
interface for accessing and manipulating the crash data stored in the PostgreSQL database. 
Additionally, Flask integrates easily with SQLAlchemy which streamlines database interactions, 
allowing for efficient data retrieval and manipulation which enhances the functionality and 
performance of the API. A range of public API routes were established to provide access to the 
system's tools and functionalities. These routes enable communication between the web portal and 
the backend services allowing users to retrieve, analyze, and visualize crash data with ease. These 
routes are accessible directly from the web portal or can be integrated into custom scripts and 
applications, offering flexibility to users of all skill levels. Documentation for the API is available 
at https://crash-mapping.edacnm.org/api/documentation/, which provides detailed information on 
the available endpoints, request parameters, and response formats. The documentation serves as a 
valuable resource for developers, facilitating integration with our system and promoting 
collaboration and innovation. 
 



  
  

CENTER FOR PEDESTRIAN AND BICYCLIST SAFETY 
Final Report 

16 

 

The API forms the backbone of our system, facilitating seamless communication between the web 
portal, the database, and accompanying modules. By leveraging Flask, SQLAlchemy, and 
RESTful principles, our API offers a robust and scalable solution for accessing and analyzing crash 
data in New Mexico. With its intuitive interface, extensive documentation, and flexible 
architecture, the API empowers users to explore and understand transportation safety trends, 
ultimately contributing to informed decision-making and improved road safety initiatives. 
 

 
Figure 3. Illustrations of the connections between the Web Portal (client), the API, the Tool 
Module, and the Database. 

Tool Module 
The tool module is the core set of analysis tools that were identified to be most useful for crash 
mapping analysis. The tools include Getis Ord General G, Getis Ord GI*, Point Density 
Estimation, Kernel Density Estimation, Global and Local Moran’s I, Mean Center, and Median 
Center. The tools were implemented in a stand-alone module and imported into the API code base 
so that the tools can be used independently of both the web portal and API. The production version 
of the module was uploaded to the Python Package Index (PyPI) and is publicly accessible to 
present a level of transparency to stoke conversation and collaboration among the community to 
build and improve upon the tools. The tool module was implemented using the Python 
programming language and various supporting libraries including the Geospatial Data Abstraction 
Library (GDAL) which allows for the creation and manipulation of raster and vector data. GDAL 
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is leveraged by the tools because of the level of control it gives over the data and metadata. The 
tool module can be found at https://pypi.org/project/crash-mapping-tools/0.0.2/.   

Getis Ord General G 
The Getis Ord General G tool calculates the General G statistic, which measures the degree of high 
and low clustering (hot and cold spots) of spatial features. It takes a GeoJSON object, a variable 
name, a spatial relationship type such as k-nearest neighbors or a distance threshold, and a value 
corresponding to the relationship as inputs. After converting the GeoJSON to a GeoDataFrame 
and extracting point coordinates, it creates a spatial weights matrix using the libpysal library based 
on the specified spatial relationship. If the data exceeds 10,000 rows, it utilizes scikit-learn's 
NearestNeighbors function for efficient computation of the numerator. Otherwise, it employs 
libpysal's G function directly. The function calculates the observed General G statistic, its expected 
value, variance, z-score, and p-value, indicating the significance of clustering. It returns these 
statistics for both the native and libpysal methods in a dictionary, or an error message if exceptions 
occur during calculation. 
 
Function Definition  
Function: General_G 
Parameters: 

• this_json (GeoJSON): A GeoJSON object containing spatial coordinates of the points to 
be analyzed. Points should be in Coordinate Reference System (CRS) EPSG: 26913 (UTM 
Zone 13N). 

• variable (str): The name of the variable/column in the GeoJSON data to be used for the 
analysis. 

• spatial_relationship (str): The type of spatial relationship to consider, either 'knn' (k-
nearest neighbors) or 'distance' (distance threshold). 

• spatial_relationship_value (int for float): The value for the specified spatial relationship, 
representing either the number of neighbors for KNN or the distance threshold. 

Return Value: Returns a dictionary containing the calculated General G statistics, including the 
observed value, expected value, p-value, and z-score. If the calculation is successful, the dictionary 
will have keys 'native' and 'libpysal' (if applicable), each containing the respective statistics. If an 
error occurs during the calculation, the dictionary will have a 'status' key with the value 'error' and 
a 'message' key describing the error. 

Getis Ord GI* 
The Getis Ord Gi* tool calculates the Getis-Ord Gi* statistic for spatial clustering of given attribute 
values in a GeoJSON dataset. It takes a GeoJSON object, a variable name, a spatial relationship 
type ('knn' or 'distance'), and a value for that relationship as input. It extracts the points and 
corresponding variable values from the GeoJSON features. If the spatial relationship given is 'knn', 
it uses the query function from the scipy.spatial.cKDTree library to find the k-nearest neighbors, 
which is capped at 400 for performance limitations, for each point and calculates the Gi* statistic. 
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If the spatial relationship is 'distance', it uses the the query_ball_point function from the same scipy 
library to find the points within a specified radius, capped at 400 meters, and calculates the Gi* 
statistic similarly. The function then updates the GeoJSON features with the calculated z-score, p-
value, and confidence level for the Gi* statistic and returns the a GeoJSON object. 
 
Function Definition 
Function: Gi_star 
Parameters: 

• this_geojson (GeoJSON): A GeoJSON object containing spatial coordinates of the points 
to be analyzed. Points should be in CRS EPSG: 26913 (UTM Zone 13N). 

• variable (str): The name of the attribute within the GeoJSON's features to be used for the 
Getis-Ord Gi* calculation. 

• spatial_relationship (str): The type of spatial relationship to define the neighborhoods. 
Acceptable values include 'knn' (k-nearest neighbors) or 'distance' (based on a specified 
radius distance). 

• spatial_relationship_value (int or float): The value that defines the neighborhood based on 
the spatial_relationship - if 'knn', it represents the number of nearest neighbors; if 'distance', 
it represents the radius (e.g., in meters) within which other points are considered as 
neighbors. 

Return Value: Returns a modified version of the original GeoJSON dictionary containing the 
calculated Gi* statistic added to each feature's properties. 

Point Density 
The point density tool calculates the density of points found within each grid cell. This is the count 
of the number of points within a given cell divided by pixel resolution which produces the density 
per unit area returned in TIFF format. To calculate point density, the function requires a GeoJSON 
object, the resolution for the raster, and a directory path to save the file. The function first unpacks 
the points from the GeoJSON and calculates the min and max coordinates for all the points to get 
the bounds of the data. Next, the cell resolution is added to the x and y min values and subtracted 
from the min values. Once correctly formatted, the min and max values are used to calculate the 
range of x and y values. The ranges are then used to create a grid using the numpy meshgrid 
function. To get the counts for each cell, we iterate over all the crash points and subtract the 
minimum coordinates from the current point’s coordinates, round down using a floor function, and 
divide by the resolution. This gives us a cell index which is then incremented in an empty array, 
illustrated in Figure 4. Once all points have been accounted for, the array is written to a TIFF file 
and saved. 
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Figure 4. This figure illustrates how the point density formula used in the code is applied to 
points from a set of features to find the array indices to be incremented.  

 
Function Definition 
Function: ‘point_denstiy’ 
Parameters: 

• geo_json (geojson): A GeoJSON object containing spatial coordinates of the points to be 
analyzed. Points should be in CRS EPSG: 26913 (UTM Zone 13N). 

• resolution (float): Resolution of the cells to be output by the function. If given 3 the 
resolution will be 3x3 meter resolution. 

• data_dir (str): Directory that the raster will be saved to (e.g. ‘/your/path/here/’) 
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Return Value: Returns a point density image in TIFF format in CRS EPSG:3857 which is expected 
by OpenLayers map in web portal. 

Kernel Density Estimation 
The KDE tool calculates the density of crashes using a kernel function and outputs the result to a 
raster dataset as a TIFF. The kernel function used to calculate KDE is the ‘KernelDensity’ function 
from Sklearn’s neighbor’s library. This function allows you to choose from a list of pre-defined 
kernels to use including ‘gaussian’, ‘tophat’, ‘epanechnikov’, ‘exponential’, ‘linear’, and ‘cosine’. 
The epanechnikov kernel was chosen because it has been shown to produce more accurate results 
using fewer data points when compared to a Gaussian kernel (Moraes et al., 2021). The function 
also allows you to set your own bandwidth radius. The bandwidth radius that we used was 
calculated using the Silverman’s rule of thumb formula which has been shown to be less affected 
by outliers in the data (Hurley & Leslie, 2024). Silverman’s formula is utilized in this research 
according to the following formula: 
 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 0.9 ⋅ 𝑚𝑚𝑚𝑚𝑚𝑚(𝑆𝑆𝑆𝑆,�
1

ln(2)
⋅ 𝐷𝐷𝑚𝑚) ⋅ 𝑛𝑛−0.2 

 
To calculate the KDE, we use the crash data points from a GeoJSON and fit them to the Kernel 
Density function model. Then we create a grid using the resolution passed from the web portal and 
calculate the center points for each cell. The kernel is calculated on these coordinates. Using the 
Kernel Density function, we calculate the log densities for all the grid points and return log 
densities. To be usable in context to the original data, we convert the log densities to probability 
densities by taking the exponential of the data and then normalize the data by multiplying by the 
number of points of the original crash data. 
 
Function Definition 
Function: ‘kde’ 
Parameters: 

• geo_json (geojson): A GeoJSON object containing spatial coordinates of the points to be 
analyzed. Points should be in CRS EPSG: 26913 (UTM Zone 13N). 

• resolution (float): Resolution of the cells to be output by the function. If given 3 the 
resolution will be 3x3 meter resolution. 

• data_dir (str): Directory that the raster will be saved to (e.g. ‘/your/path/here/’) 
Return Value: Returns a kernel density image in TIFF format in CRS EPSG:3857 which is 
expected by OpenLayers map in web portal. 
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Global Moran’s I 
The Global Moran’s I tool calculates the Global Moran’s I statistics for a set of points using a 
specified attribute and the number of nearest neighbors. To calculate these statistics the points and 
the number of nearest neighbors are first passed to the KNN function from the 
libpysal.weights.distance library to calculate the point weights. Once weights have been 
calculated, the points and their weights are given to the Moran function from the esda.moran 
library to generate the Global Moran's I statistics; the I value, expected I value, P value, and Z 
value. The statistics are then returned to the user in a python dictionary. 
 
Function Definition 
Function: ‘global_morans_i’ 
Parameters: 

• geo_json (geojson): A GeoJSON object containing spatial coordinates of the points to be 
analyzed. Points should be in CRS EPSG: 26913 (UTM Zone 13N). 

• key (string): The string definition of the attribute to use for calculation (e.g. 
‘alcohol_involvement’) 

• k (int): Number of nearest neighbors to calculate weights. 
Return Value: Returns a dictionary with the Moran’s I value, expected I value, z value, and p value. 

Local Moran’s I 
The Local Moran’s I tool calculates the local Moran's I statistics for a set of points using a specified 
attribute and the number of nearest neighbors. Similarly to the Global Moran’s I tool, the points 
and the number of nearest neighbors are passed to the KNN function from the 
libpysal.weights.distance library to calculate the point weights. After the weights are calculated, 
the points and their weights are given to the Moran_Local function from the esda.moran library to 
generate the local I values, P values, and quadrants. These values are then mapped to their 
corresponding data point in an array and then filtered by whether they are significant. Significance 
is determined by whether their p-value is less than 0.05. The filtered list of points is then returned 
as a GeoJSON object. The points can then be visualized on the map to show which quadrant they 
belong; High-High, Low-High, High-Low, Low-Low. 
 
Function Definition 
Function: ‘local_morans_i’ 
Parameters: 

• geo_json (geojson): A GeoJSON object containing spatial coordinates of the points to be 
analyzed. Points should be in CRS EPSG: 26913 (UTM Zone 13N). 

• key (string): The string definition of the attribute to use for calculation (e.g. 
‘alcohol_involvement’) 

• k (int): Number of nearest neighbors to calculate weights. 
Return Value: Returns a geojson of significant points with mappings to their respective quadrants. 
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Mean Center 
The Mean Center tool is used to calculate the mean center of the point distribution. To calculate 
the mean center, points are extracted from the provided GeoJSON, and numpy’s mean function is 
run on the list of point coordinates. Numpy was used for this tool because it is able to quickly 
calculate both the x and y coordinates by vectorizing the calculation. Vectorization is a method of 
performing calculations on an array without the need to use for loops, which can be resource 
intensive. Once the mean has been generated, the point is added to a GeoJSON object and returned. 
 
Function Definition 
Function: ‘mean_center’ 
Parameters: 

• geo_json (geojson): A GeoJSON object containing spatial coordinates of the points to be 
analyzed. Points should be in CRS EPSG: 26913 (UTM Zone 13N). 

Return Value: Returns a geojson with the point geometry of the mean center. 

Median Center 
The Median Center tool is used to calculate the geometric median of the point distribution by 
minimizing the sum of distances to each point. After extracting the points from the GeoJSON, the 
initial median value is set by calculating the mean of the points. This is used as a starting point for 
the rest of the calculation. We then iterate and calculate the distances from the point to the existing 
median. In the same iteration, median estimate is updated using a weighted mean of the points, 
where the weights are inversely proportional to the distances (closer points have higher weights). 
Iteration continues to update the median estimate until the median converges. Once iterations 
conclude, the median point is inserted into a GeoJSON object and returned. 
 
Function Definition 
Function: ‘geometric_median’ 
Parameters: 

• geo_json (geojson): A GeoJSON object containing spatial coordinates of the points to be 
analyzed. Points should be in CRS EPSG: 26913 (UTM Zone 13N). 

Return Value: Returns a geojson with the point geometry of the mean center.
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Results 
The results of this study show that there are comprehensive, and relatively inexpensive, solutions 
available for analyzing data to help make informed decisions about traffic and pedestrian safety in 
place of static mapping mediums. Static maps work well to give an overview of a dataset but fall 
short when working with a large number of features over a temporal range. These issues are 
addressed by the integration of open-source software, tools, and programming techniques to build 
a web portal and community toolset capable of analyzing over a decade or crash data. With this 
study we have been able to address the inherent issue with static maps by providing a dynamic 
web portal that allows users to explore the data in an intuitive way. 
 
The web portal provides the point data for a given year and a hexbin layer to show local densities 
calculated based on the current viewports zoom level.  The hex bin sizes include state level, county 
level, city level, and block level bin sizes of 10 miles, 5 miles, 0.5 miles, and 50 feet radius’ 
respectively which are recalculated each time a user zooms in or out of the map. This is done so 
that the dynamic map represents a more accurate depiction of the data as zoom levels, area size, 
and number of points within the viewport change. Along with this data overview, eight tools are 
available to users. Getis Ord General G, which allows users to identify clustering of high or low 
values; Getis Ord GI*, for Hot/Cold spot analysis; Point Density, for identifying cell density; 
Kernel Density, for finding density using a kernel function over a continuous surface; Global 
Moran’s I, for assessing spatial autocorrelation; Local Moran’s I, for identifying the degree of 
spatial autocorrelation and significant hot spots, cold spots, and outliers; Mean Center, to find the 
mean center for the point distribution; and finally the Median center, for identifying the median 
point distribution of the dataset. All of the tools can be accessed through the web portal, the API, 
or by downloading the tool set directly. This makes data analysis even more accessible and allows 
it to be integrated into different workflows by allowing users, of all different skill levels and 
backgrounds, the opportunity to be able to analyze crash data effectively. 
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Discussion 
The development of the dynamic, interactive web portal for visualizing and analyzing traffic crash 
data marks a significant advancement over traditional static maps and proprietary web portals. This 
project effectively harnessed free programming techniques and sophisticated spatial analysis tools 
to provide comprehensive insights into traffic crash patterns and trends. 
 
One of the core strengths of this project lies in its use of advanced spatial data management and 
visualization techniques. Using data handling techniques allows for optimizing data retrieval, 
improving performance, and solidifying a standardized data format to be used by the tools. Each 
spatial analysis tool demonstrated significant potential in understanding traffic crash data. For 
instance, point pattern analysis helps identify central tendencies, dispersion, and directional trends, 
which are crucial for identifying high-risk areas and informing traffic safety measures. High/Low 
Clustering and Hot/Cold Spot Analysis provide insights into areas with statistically significant 
concentrations of high or low crash values, aiding in the identification of problematic zones. 
Similarly, Global and Local Moran’s I and Kernel Density analysis offer detailed views on spatial 
autocorrelation and crash densities, respectively, highlighting areas that require targeted 
interventions. 
 
The technical foundation of the web portal is robust, leveraging the Python programming language 
and the GDAL library. The use of Python frameworks such as Flask for the backend, along with 
HTML, CSS, and JavaScript for the graphical user interface, ensured a seamless and user-friendly 
experience. This choice of technology stack facilitated the development of efficient and scalable 
tools and APIs, critical for the portal’s performance and future scalability. Python, specifically, 
was chosen because of its vast range of libraries and its widely adopted use in the GIS community 
and other industries as using familiar tools helps to promote the project for use and development 
of custom tools and interfaces. By leveraging open-source tools to create this project, we have 
effectively managed to prove that there are cost-effective solutions for advanced spatial analysis.



  
  

CENTER FOR PEDESTRIAN AND BICYCLIST SAFETY 
Final Report 

25 

 

Conclusions and Recommendations 
In this study, it was concluded that analyzing crash data is an effective method for improving road 
safety. However, the current method for visualizing crash data in New Mexico using static maps 
has limitations physically and temporally. Therefore, this study aimed to overcome these 
limitations by developing a dynamic and interactive web application for visualizing crash data, 
enabling transportation professionals to develop analysis workflows and evidence-based strategies 
to reduce the frequency and severity of crashes. The methodology used in this study effectively 
analyzed and visualized the motor vehicle traffic crash data in the state of New Mexico. The GIS 
dataset containing coordinates and attributes of reported crashes from 2012 to 2021 was a 
comprehensive source of information for this investigation. Spatial statistics methods were 
employed to comprehend the features of both the spatial and temporal distribution of road traffic 
accidents. Moreover, tools were developed in an open source environment to perform analysis 
with global and local spatial statistics indices. It is recommended to further investigate and test the 
available fields to identify unforeseen useful information in the crash dataset to fully exploit its 
richness and the questions which can be answered with the tools developed.  
 
The crash mapping prototype developed in this study provided an interactive web-based mapping 
tool enabling the users to visualize the yearly crash data gathered in New Mexico. The application 
allowed the users to choose from a list of years to be displayed, loaded the corresponding dataset 
into the map as a point layer, and generated hex bins and an accompanying legend with class 
density ranges. This study analyzed and created a web-based software to visualize crash data in 
the state of New Mexico, providing valuable insights into the patterns and trends of traffic 
accidents in the area.  By splitting the portal into independent parts, the study provides easily 
accessible analysis tools for less technical users and a clear starting point for users who wish to 
further explore implementing their own solutions. This also opens the door for collaboration and 
tool optimization in future revisions of the code base. The crash mapping prototype developed in 
this study can be used by policymakers and city planners to identify high-risk areas and implement 
targeted interventions to improve traffic safety in the city. The methodology can also be applied 
to other regions to provide valuable insights into traffic safety and inform evidence-based policy 
decisions. 
 
It is recommended that further investigation be conducted into creating data handling procedures 
and analysis workflows such that a dynamic mapping system can be updated and enabled to run 
analyses efficiently when new data is presented.
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