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Abstract

Cycling remains a popular mode of transportation, yet cyclists face numerous safety challenges.
Although human factors research typically focuses on motor vehicle drivers, studies addressing
active transportation users, like cyclists, are scarce. This project aims to identify the best workload
measures and devices for cycling to conduct naturalistic cycling data collection. Additionally, it
aims to create a naturalistic cycling dataset considering the different workload measures identified.
For that, we conducted a naturalistic cycling experiment in Albuquerque, New Mexico, with 23
volunteers riding a predetermined route while wearing various biosensors to capture performance
and physiological data. Subjective workload measures were also collected using established
indices from the literature. Then, the team performed exploratory analyses combining data from
the multiple sensors. In these analyses, we identified differences between male and non-male
riders, as well as variations in workload levels between the first and second rides, highlighting the
impact of familiarity with the infrastructure. The analysis focused on two intersections in high
bicycle stress segments. Results indicated that subjects preferred routes with cycle paths and good
street lighting. Additionally, heart rates were higher at intersections compared to the rest of the
route. Subjects tended to look straight ahead or at lower traffic light infrastructure at intersections.
We conclude that combining subjective, performance, and physiological measures offers a more
comprehensive understanding of the workload experienced by cyclists. These insights can inform
infrastructure planning and advance methodologies for assessing bicycle stress levels, considering
human factors.
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Executive Summary

Cycling remains a popular mode of transportation, yet cyclists face numerous safety challenges.
Although human factors research typically focuses on motor vehicle drivers, studies addressing
active transportation users, like cyclists, are scarce. This project's primary objective was to
recognize workload measures that could help analyze cyclists' behavior. For that, we first
conducted an extensive literature review that resulted in a published paper. Additionally, we
conducted a naturalistic cycling experiment involving 23 cyclists in Albuquerque, New Mexico.
Using wearable biosensors such as electrocardiogram (ECG) and eye-tracking devices, we
collected subjective, physiological, and performance data in a real-world setting. The data
collection process consisted of three phases. During the initial phase, participants are asked to
provide information on their travel behaviors and various sociodemographic factors through a
survey. In the second phase, they wore various biosensors and completed rides in both clockwise
and counterclockwise directions. In the third phase, subjects were given another questionnaire
using recognized workload scales, such as the NASA TLX and Borg RPE scales, among others.
The route, approximately 1.4 miles long, started and ended at the Lobo Bike Shop on the
University of New Mexico campus and included various bike infrastructure types and
intersections.

Our sample consisted of 70% male volunteers, which aligns with the percentage of male cyclists
in the U.S. The average age of male subjects was 33 years, while the average age of non-male
subjects was 27.7 years. This demographic distribution also reflects national cycling trends and
commuter biker statistics in Albuquerque. Statistical analysis using the 2022 American
Community Survey’s 5-year estimate indicated no significant difference between our sample and
the population regarding gender distribution when combining non-binary and female categories.
The age distribution showed no significant difference for individuals younger than 24. However,
there was a significant difference for those aged 25 and older, with most participants falling
between 25 and 44 years old, compared to 44% of bike commuters in Albuquerque. In terms of
ethnicity, 56% identified as Hispanic or Latino, 52% as Caucasian or White, 13% as Asian, and
34.74% as Other. On average, participants lived in households with 2.1 inhabitants and reported
fewer bike crashes compared to car crashes over the past three years.

Participants primarily commuted by bike to work or school but preferred using a car for grocery
shopping, personal errands, and social recreation. Using the various scales considered in the
questionnaires, subjects revealed a high likelihood of using routes with cycle paths or marked lanes
at crossings, good street lighting, smooth surfaces, minimal traffic, and signalized crossings.
Participants were extremely unlikely to use the fastest route. They felt highly successful in
accomplishing the task, which was more mentally demanding than physically demanding, by
responding to the NASA TLX scale. The internal consistency of the scales used was acceptable,
with Cronbach's alphas between 0.72 and 0.78. Subjective measures captured cultural and
socioeconomic factors influencing route planning and decision-making. Limitations include the
inability to capture moment-to-moment data without disrupting the naturalistic setting.
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When combining the measures, we found that reported mental workload, based on NASA TLX
stress levels, indicated that higher stress levels did not correlate with significantly higher BPM
captured by ECG. We also observed that the mean BPM was generally above the overall session
average at intersections, with exceptions at the Girard and Silver intersections depending on the
stated stress levels and ride direction. BPM fluctuations at intersections for individual subjects
highlighted increased stress or physical exertion compared to other parts of the route. Finally, heat
maps showed that cyclists predominantly focused straight ahead at intersections, with males
having narrower areas of focus compared to non-males, who looked further into intersections.
Additionally, the area of interest expanded for cyclists on their second ride, suggesting increased
familiarity and comfort with the route.

This data collection left many lessons learned. For instance, careful planning ensured the selection
of suitable sensors and processing software was key. Unexpected issues, such as a malfunctioning
GPS, were mitigated using backup devices. Additionally, ensuring participants understood the
experiment's procedures was crucial. As future research, we believed integrated biosensors could
minimize interference and improve data collection.

The conclusions of this study emphasize the importance of a holistic approach to understanding
cyclists' experiences. By integrating subjective, physiological, and eye-tracking data, we gained a
comprehensive understanding of these experiences, revealing gender differences in visual attention
patterns that necessitate further research to enhance cycling safety. The insights derived from this
study have practical applications, such as informing safer and more efficient road design,
optimizing training, identifying stress triggers, and monitoring safety and health. Future research
leveraging advanced technologies and naturalistic study designs can further develop
comprehensive assessments of cyclist workload and safety. This project also allowed the students
involved to gain an understanding of human factors science in transportation and initiated
knowledge at UNM regarding the use of biosensors in active transportation. Additionally, the
findings have policy implications, guiding the development of safer cycling environments and
promoting active transportation and public health. This study underscores the critical need for a
holistic approach to improve cycling infrastructure and safety for all.
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Introduction

Cyclists are vulnerable road users; nearly 1000 cyclists lose their lives, and 130,000 are injured
annually on US roads (CDC, 2022). Unfortunately, the number of cyclist fatalities has witnessed
an upward trend between 2012 and 2018 (Venkatraman et al., 2021), with the majority of fatalities
happening in urban settings (78%) and during daylight (49%) (NHTSA, 2019). These numbers are
projected to increase with the expansion of active transportation infrastructure and adoption of
Complete Streets policies in various U.S. cities and states if no serious steps are taken to improve
the current safety situation (Smart Growth America, 2023; U.S. DOT, n.d.; WSL, 2022).

“Human Factors” is the science that explains the relationship between machines and users, and
mental workload is a usual quantification metric (Tignor, 2022). Key aspects of human factors
science include human performance, safety, human-infrastructure interaction, and additional
relevant factors. However, research on human factors in transportation typically concentrates on
motor vehicle drivers, often neglecting active transportation users like cyclists. Cyclists might face
higher workload levels due to their vulnerability compared to car drivers and the changing
workload from physical activity (increased fatigue with cycling), direct exposure to the
surrounding environment (e.g., weather conditions), and issues related to disconnected
infrastructure. Hence, it is essential to understand the factors impacting cyclists’ mental workload
to improve their comfort, safety, and infrastructure planning.

Cyclists are among the most vulnerable users in the transportation system, lacking the protection
provided by vehicle bodies, safety features such as airbags, or reliance on engines (Schwab &
Meijaard, 2013). They have to exert physical effort, which causes fatigue and consequently
consumes the attentional resources of the cyclists—knowing that cyclists' physical supply is
influenced by the broad spectrum of capabilities of cyclists (elders vs. young, tall vs. short, male
vs. female, overweight vs. slim, etc.). Moreover, cyclists are more vulnerable to their surrounding
environment than drivers, yet motor vehicular infrastructure guidelines often overlook their
specific needs and safety concerns. This discrepancy is further amplified by a lack of data, which
is the foundation for developing comprehensive guidelines prioritizing cyclists' safety and comfort.
Consequently, the need for more research and guidelines becomes evident.

Cycling infrastructure vulnerability is represented by the discontinuity of infrastructure,
maintenance issues (snow plowing, etc.), and the necessity of sharing infrastructure with other
road users such as cars, trucks, and mass public transportation. Even in comparison with
pedestrians, cyclists are more exposed to conflicts and crashes because they interact with vehicular
traffic explicitly, not only at intersections. Also, cyclists travel longer distances at higher speeds
than pedestrians with higher restricted movements, such as shoulder checks. In brief, all those
factors that cause the vulnerability of cyclists would also impact cyclists’ mental workload,
perception, comfort, and behavior. Recently, advancements in the availability and portability of
sensors have significantly improved data collection capabilities. These sensors can gather a wide
variety of data, including speed for performance measures, electrocardiogram (ECG) and
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electrodermal activity (EDA) for stress measurements, and eye tracking for assessing gaze
behavior, among other metrics.

Currently, various state Department of Transportation (DOTSs) are requiring the use of Bicycle
levels of stress (BLOS) in the design of bicycle infrastructure on state roads by using pre-defined
methodologies, especially those designed using secondary sources (ODOT, 2024; WSDOT, 2023).
While BLOS has been instrumental in advancing our understanding of bicycling suitability, there
is a growing need to evolve these methodologies. By leveraging naturalistic studies and advanced
technologies, we can develop more comprehensive and accurate assessments of BLOS, ultimately
creating safer and more enjoyable cycling environments for all user profiles.

Despite the limited literature on human factors in cycling, this project aims to address this research
gap by presenting a comprehensive review of the factors affecting cyclists’ workload, perception,
and behavior. It explains various workload measures and evaluates their effectiveness in
quantifying cyclist workload. Additionally, it conducts a naturalistic cycling experiment to create
a database, and explores the collected workload measures, considering the diversity of the sample
and various infrastructural contexts. In this project, variable infrastructure will be considered in
terms of two intersections in the experiment. To achieve these research objectives, a scoping
review was carried out using the methodological framework proposed by (Arksey & O’Malley,
2005). Additionally, we collected subjective, performance, and physiological measures from
respondents in Albuquerque, New Mexico, along a defined route. Albuquerque serves as an
important case study for this project due to its diverse urban landscape and varying infrastructure
quality. Statistics indicate that Albuquerque experienced 0.71 cyclist fatalities per 100K in 2020,
representing 3.8% of all roadway fatalities, making it imperative to understand the human factors
contributing to safety risks in this region. Additionally, Albuquerque's commitment to promoting
cycling through dedicated bike lanes and trails offers valuable insights into the impact of
infrastructure on cyclist behavior and safety, addressing a crucial aspect of this study. Finally, we
concluded by discussing the findings and providing venues for future work.
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Literature Review

The literature review covers a wide range of topics relevant to the study. It begins with exploring
factors influencing perception, workload, and behavior. Following this, an examination of various
types of workload measures is conducted, accompanied by a brief overview of specific
methodologies for their quantification. Subsequently, the discussion shifts to the advantages of
naturalistic experiments for non-motorized users, highlighting their importance within the scope
of this research. It should be noted that sections of this literature review have been previously
published (Habib et al., 2024) as part of the outcomes of this project.

Factors Impacting Perception, Workload, and Behavior

During cycling, cyclists allocate their cognitive resources to various challenging characteristics
that consume the cyclists’ workload supply. The workload relates to but is not limited to 1) the
characteristics of cyclists (age, sex, personality, etc.), 2) adapting to infrastructural design changes
(longitudinal grades), 3) interpreting external information (signing, traffic devices, marking,
type/quality of the route, obstacles, and hazards, portable devices, etc.), 4) type of bicycle (assisted
vs. conventional), 5) changing decisions due to weather, and several other factors. In this literature
review, we will describe characteristics within the first four situational characteristics groups and
also review how human factors have been studied in relationship to the mental workload of motor
vehicle drivers.

Age Impacts

Age is a significant factor in expressing cyclists’ physical perceptions, capabilities, and decisions.
For instance, children were found to have delayed reaction times compared to adults regarding
identifying hazards, suggesting that hazard perception depends on age and experience (Zeuwts et
al., 2017). Similarly, perceptions of infrastructure differed between older and younger cyclists.
Older cyclists desired more cycle paths than younger cyclists, with more strict respect for laws,
because it made them feel safer (Bernhoft & Carstensen, 2008). Similar conclusions arise when
studying workload. A study examining middle and older age participants found that, regardless of
bicycle type (assisted or conventional), workload levels increased with age in complex situations
such as when making left turns (Boele-Vos et al., 2017). Moreover, a study found that using
portable devices reduced cognitive resources for teenage and young adult cyclists, increasing the
likelihood of collisions. Additionally, the complexity of the cycling traffic situation was identified
as a predictor of crashes (Bulsink et al., 2016). It was also found that older adults take longer to
recover from perturbations. The results revealed that older cyclists rely more on knee movement
to keep balance than younger subjects. This counter behavior explains the increased risk of older
cyclists in single-sided (tip-over) bicycle accidents (Afschrift et al., 2022). Those findings were
confirmed by the results of another study where older cyclists use different strategies than younger
cyclists in rebalancing themselves after perturbations. Movement limitations consume attentional
resources that may lead to errors and, as a result, involvement in collisions (Allum et al., 2002).
The studies reviewed herein allow us to conclude that age, workload, and cycling traffic
complexity significantly impact cyclist safety and could affect future behaviors. Studies on
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behaviors revealed that using portable devices has dissimilar impacts on different age groups’
behavior (Goldenbeld et al., 2012). Additionally, mental impairments in relation to age were
associated with cyclists’ safety, represented by falling off (Engbers et al., 2018). Overall, cyclist’s
perceptions, workload, and behaviors are differentially affected by the cyclist’s age; however,
other situational characteristics might contribute too.

Infrastructure

Infrastructure characteristics also heavily impact cyclists’ perceptions, workload levels, and
behavior. Similar to age, specific movements, traffic complexity, and infrastructure availability
have been studied in their context. In terms of perceptions, a study using an online survey in 20
countries revealed strong associations between infrastructure, self-reported crashes, and human
factors regardless of the respondent’s background (Useche et al., 2018). In terms of workload
levels, qualitative and quantitative workload measures have been developed to evaluate cyclists’
feelings of comfort and safety. A study used subjective and physiological workload measures to
assess the infrastructural impact on cyclists’ workload, concluding that quantitative expression of
cycling workload is crucial for safe bikeway design and management and controlling conditions
that induce overworking and user discomfort (S. Qu et al., 2022). Similarly, a study used workload
physiological measures and video recordings to understand the influence of infrastructural settings
on cyclists, concluding that stress levels increase while cycling in mixed traffic settings and peak
traffic times (Caviedes & Figliozzi, 2018). The quality of the cycling path itself was also found to
consume cyclists’ workload supply, which may impact the alertness and responsiveness of cyclists
to surrounding environmental hazards (Vansteenkiste et al., 2014). Regarding behavior, results
have agreed that cyclists' behavior changes with proximity to motorized vehicles (Chuang et al.,
2013). Using Virtual Reality (VR), a study concluded that cyclists’ speeds changed depending on
the bike facility, showing more braking and head movements close to intersections, while average
speed increased when cycling in segregated lanes, where cyclists felt the safest (Nazemi et al.,
2018). In a different study regarding the impact of mixed and separated bike lanes on cyclists’
workload (Knight & Charlton, 2022), separated bike lanes were generally considered safer due to
the absence of interaction with vehicular traffic. However, cyclists suffer/enjoy a low mental
workload (mental fatigue) while cycling in separated bike lanes, which may increase collisions
due to increased speed or low perception of hazards.

Portable Devices

Portable devices, such as smartphones, tablets, and headphones, represent a significant reason for
cyclists’ impairments, and, as a result, changes in workload levels and behaviors lead to a shortage
of cognitive resources and errors. A study found a higher chance of getting involved in a crash for
teens while using portable devices versus the same age group that does not use portable electronic
devices (Goldenbeld et al., 2012). Similarly, male students' mobile phone usage during cycling
was associated with experiencing a crash/near crash. Interestingly, the perception of risk among
those students helped them decrease mobile phone usage, consequently improving cyclists' safety
(Ichikawa & Nakahara, 2008). Another study found through a questionnaire that cyclists hardly or
never engaged in secondary tasks such as using mobile phones due to the perceived risk in the
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cycling infrastructure (Young et al., 2020). Regarding workload, various studies have agreed that
using portable devices increases mental effort ratings. Among all activities, texting on the phone
was found to have the highest negative impact on cyclists’ performance (de Waard et al., 2010).
Talking or texting was argued to contribute to risky behavior by cyclists that resulted in fall-off
collisions. Texting was the most impacting among different distractions, even more than listening
to music. Texting was translated into a mental load that resulted in speed reduction, increased
acceleration, and changes in the cycling deflection angle (Jiang et al., 2021). Hence, using portable
devices could have profound implications on cyclist workload, often translated into risky behaviors
(Jiang et al., 2021; Santos-Reyes et al., 2023).

Bicycle Type

Researchers have studied the impact of assisted bicycle on cyclists' workload, as they differ from
conventional bicycles by providing higher cycling speeds. For example, e-bikes can influence
cyclists' perception, decrease fatigue and affect their behavior. Additionally, e-bikes can also
influence car drivers' behavior and judgment in yielding situations, potentially affecting cyclists'
maneuverability and perception in hazardous situations. Regarding workload, mental workload,
and anxiety levels were captured from volunteers riding e-bikes equipped with sensors to monitor
and record speed, bike balance, and the proximity of cars overtaking bicycles (Pejhan et al., 2021).
The results indicated a significant speed difference between e-bikes and conventional bicycles,
which did not impact the perception of cyclists (maybe because of the difference in cycling
situations); however, high levels of workload and anxiety were detected when cyclists tried to
overtake slow cars in both bike types. These results were consistent with those from another study,
where middle-aged and older cyclists’ workload was similar in e-bikes and conventional bicycles
(Twisk et al., 2013). Regarding behaviors, a study that captured subjective measures indicated a
higher likelihood of collisions requiring emergency department treatment than conventional
bicycles when riding e-bikes (Schepers et al., 2014). Similar results were identified in another
study; e-bike riders achieved higher average speeds, accelerations, and breaking, which increased
their need for emergency department treatment (Huertas-Leyva et al.,, 2018). Other studies
confirmed the increase in speed of cyclists on e-bikes in comparison with conventional bicycles,
potentially increasing risky behaviors (Dozza et al., 2016; Jenkins et al., 2022).

Car Driver Workload

The proximity of cyclists has been shown to impact drivers’ workload and behavior. In a
simulation study, a peripheral detection task was used for workload measurement of car drivers at
intersections during the presence and absence of cyclists (Vlakveld, 2011). The results indicated
that compared to intersections without cyclists, drivers reduced speed with more substantial
deceleration and shorter distances, knowing that drivers have the right-of-way, especially at rural
intersections. This could be attributed to the expectancy of drivers regarding cyclists' unexpected
actions, which represents an underlying latent hazard (Kaya et al., 2021). An eye-tracker was used
at urban intersections to examine the visual scanning failures at conflict points with cyclists
(O’Hern et al., 2019). After analyzing 443 turn events, the results concluded that scanning failures
were 2.01 times more significant for drivers without cycling experience. Similarly, a study
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revealed that car drivers’ eye fixation time on cyclists (in the opposite and same direction) was the
highest right after eye fixation time on the cockpit (Bongiorno et al., 2017). Fixation time on
cyclists in the same direction was higher than fixation time on cyclists in the opposite direction,
and this could be explained by the expectation of cyclists’ sudden movements. These results
confirmed the increased workload levels of car drivers when they are close to cyclists (Bongiorno
et al., 2017). Additionally, the geometric design impacted the drivers’ behavior when overtaking
cyclists (Bella & Silvestri, 2017). In a simulator study, lateral clearance and speed reductions were
captured to understand the impact of road curvature and direction of curvature on car drivers’
behaviors. A minor clearance was recorded on tangential sections with no speed reductions. Higher
clearances were observed on the right- and left curves, where speed reduction occurred on the right
curves but speed increase on the left curves.

Perceptions, workload, and behaviors in the interaction between car drivers and cyclists are better
understood from the motor vehicle driver than from the cyclist aspect. Although the
aforementioned factors might influence cyclists’ workload, little research is dedicated to
measuring it from the cyclist's perspective. Hence, identifying which measures could be used to
understand cyclist workload is a timely research endeavor. Based on the studies presented about
human factors and workload measures, Table 1 offers a summary of studies on cycling behavior,
perception, and workload.
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Table 1. Summary of Human Factor Studies

Study-specific survey
(Knight & Charlton, 2022; Nazemi et al.,
2018; Useche et al., 2018)

Task Load Index (TLX)
(S.Quetal., 2022)

Cooper-Harper scale
(S.Quetal., 2022)
Subjective Workload
Assessment Technique
(SWAT) (s. Quetal., 2022)

Physical Workload:

Borg’s Perceived Exertion and

Pain Scales (RPE)
(S. Quetal., 2022)

(S.Quetal., 2022)

Braking
(Nazemi et al., 2018)

Speed
(Nazemi et al., 2018)

(Nazemi et al., 2018; S. Qu et al.,
2022)

Head movement
(Knight & Charlton, 2022)

Gaze Behavior
(Vansteenkiste et al., 2014)

Galvanic skin response
(Caviedes & Figliozzi, 2018)

Factors Test Name or Target Measure Studies
Measured Set-ups
Subjective Performance Physiological
Age Study-specific survey Peripheral detection task Survey
(Goldenbeld et al., 2012) (Boele-Vos et al., 2017; Zeuwts et al., 2017) (Bernhoft & Carstensen, 2008; Engbers et
al., 2018; Goldenbeld et al., 2012)
Average cycling speed Field E .
(Boele-Vos et al., 2017) e Xperiment
(Boele-Vos et al., 2017)
Steering rotation .
Attt g L 2022. Bulsink et al. 2016 Laboratory Experiment
(Afschriftetal., ; Bulsink etal., ) (Afschrift et al., 2022; Allum et al., 2002;
Bulsink et al., 2016; Zeuwts et al., 2017)
Infrastructure | Mental Workload: Peripheral detection task Heart rate variability Survey

(Knight & Charlton, 2022; Useche et al.,
2018)

Field Experiment

(Caviedes & Figliozzi, 2018; Chuang et al.,
2013; S. Qu et al., 2022; Vansteenkiste et
al., 2014)

Virtual Reality Simulator
(Nazemi et al., 2018)
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2012; Ichikawa & Nakahara, 2008; Santos-

Reyes et al., 2023)

Rating Scale Mental Effort

(RSME)
(de Waard et al., 2010)

Mindfulness Attention and

Awareness Scale (MAAS)
(Young et al., 2020)

Five Facet Mindfulness

Questionnaire (FFMQ)
(Young et al., 2020)

Cycling Anger Scale (CAS)
(Young et al., 2020)

Cycling Anger Expression
Inventory (CAX)
(Young et al., 2020)

Cyclist Behaviour

Questionnaire (CBQ)
(Young et al., 2020)

International Personality Item

Pool (IPIP) Big-Five Factor

Markers
(Young et al., 2020)

Speed
(de Waard et al., 2010)

Factors Test Name or Target Measure Studies
Measured Set-ups
Subjective Performance Physiological
Portable Study-specific survey Peripheral detection task Survey
Devices (de Waard et al., 2010; Goldenbeld et al., (de Waard et al., 2010) (de Waard et al., 2010; Ichikawa &

Nakahara, 2008; Santos-Reyes et al.,
2023; Young et al., 2020)

Observational Experiment
(de Waard et al., 2010)

Field Experiment
(de Waard et al., 2010; Jiang et al., 2021)
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(Schepers et al., 2014)

(Pejhan et al., 2021; Twisk et al., 2013)

Braking
(Dozza et al., 2016; Huertas-Leyva et al., 2018;
Twisk et al., 2013)

Steering rotation
(Dozza et al., 2016; Twisk et al., 2013)

Speed

(Twisk et al., 2013)

(Pejhan et al., 2021; Twisk et al.,
2013)

Head movement
(Twisk et al., 2013)

Factors Test Name or Target Measure Studies
Measured Set-ups
Subjective Performance Physiological
Bicycle Type Study-specific survey Peripheral detection task Heart rate variability Survey

(Schepers et al., 2014)

Field Experiment
(Pejhan et al., 2021; Twisk et al., 2013)

Naturalistic Study
(Dozza et al., 2016; Huertas-Leyva et al.,
2018)

Car Drivers
Workload

Rating Scale Mental Effort
(RSME) (0’Hern et al., 2019)

Peripheral detection task
(O’Hern et al., 2019; Vlakveld, 2011)

Braking distance
(Vlakveld, 2011)

Steering rotation
(Bongiorno et al., 2017)

Speed
(Bella & Silvestri, 2017; O’Hern et al., 2019;
Vlakveld, 2011)

Gaze behavior

(Bongiorno et al., 2017; Kaya et al.,
2021)

Galvanic skin response
(Bongiorno et al., 2017)

Driving Simulator
(Bella & Silvestri, 2017; O’Hern et al.,
2019; Vlakveld, 2011)

Field Experiment
(Bongiorno et al., 2017; Kaya et al., 2021)
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Workload Measures

The process of quantifying cyclists' human factors is complex due to the many interfering factors
that impact cyclists’ workload, making workload multidimensional. The overview presented in the
previous section shows that factors range from interference with the primary task (cycling) to
others, such as demographic characteristics of the cyclist, experience in cycling and other modes,
traffic laws, and many others. Due to these factors' diverse and interactive nature, it is not
recommended to measure their individual contributions to cyclists' cognitive resources using a
single measure. Generally, workload measures are classified as 1) subjective, 2) performance, and
3) physiological, which have been extensively used to evaluate users’ workload in various
environments such as aviation, driving, and nuclear plants (Tao et al., 2019).

However, cycling workload levels are unique in nature because of the strong interaction with the
physical workload, interaction with other road users, changing and discontinued infrastructure, and
other factors that cause the workload levels to fluctuate. In addition, it is worth mentioning that a
physical workload interferes with the cyclists’ mental workload, reflected in errors and wrong
decisions (Boksem & Tops, 2008). Mental or cognitive fatigue — not to be confused with physical
fatigue- results from underloading (monotony or wealth of resources that causes boredom) or
overloading without rewards (Boksem & Tops, 2008; Hockey, 2013; Irvine et al., 2022; Jaquess
etal., 2017; Lal & Craig, 2001), which has also been noted to interfere with cognitive performance
(Pageaux & Lepers, 2018; Paxion et al., 2014; Pires et al., 2018). In connection, there is a strong
association between mental workload and physical workload, as once the available attentional
resources are consumed, the performance deteriorates, leading to task failure (Boksem & Tops,
2008; Jaquess et al., 2017). This occurs because the brain regions responsible for sensing effort
are also involved in cognitive fatigue and exertion (Irvine et al., 2022). As a result, the physical
effort diminishes the resources available and used for mental workload (Boksem & Tops, 2008;
Pires et al., 2018). In the following subsections, we will summarize in a broad sense the three
different workload measures available.

Subjective Workload Measures

Subjective workload measures are the most common measures in the literature. Subjective
measures are advantageous because they are economically feasible, do not require sophisticated
measurements, and are non-intrusive. In various studies, subjective workload measures do not
follow a specific, pre-validated questionnaire but rather are efforts from the authors to understand
the impacts of factors such as infrastructure (Knight & Charlton, 2022; Nazemi et al., 2018; Useche
et al., 2018), the use of portable devices while riding (Goldenbeld et al., 2012; Ichikawa &
Nakahara, 2008; Santos-Reyes et al., 2023), previous cycling experience (Schepers et al., 2014),
in cyclist workload. Many other studies do however use pre-determined subjective measures to
understand user systems' workload. The NASA TLX (Hart & Staveland, 1988), the Borg-CR10
scale (Borg, 1982), and RSME (de Waard et al., 2010) are examples of common subjective scales.
However, it is worth mentioning that subjective workload measures are unidimensional (unlike
NASA TLX that is multidimensional) in nature, which does not perfectly fit the outdoor cycling
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environment (Paxion et al., 2014). Subjective workload measures are also prone to respondents'
bias (Annett, 2002). The results also must be accompanied or validated by other workload
measures. For instance, subjective workload measures in the work environment have resulted in
differential outcomes according to cultural differences (Johnson & Widyanti, 2011). Hence,
understanding subjective workload measures for cyclists might not look like a one-size-fits-all
approach; careful considerations are necessary to quantify subjective workload.

Performance Workload Measures

Performance measures have been used extensively in assessing car drivers’ workload levels.
Usually, the performance measures target the primary and the secondary tasks. For instance,
primary tasks in driving involve lane control, lateral changes in car trajectory, headway, speed
choice, and more. Secondary tasks, on the other hand, refer to those that interfere with the primary
task. Typically, peripheral detection tasks are employed to measure the attentional resources
consumed by the primary task (Tao et al., 2019). Choosing the proper performance workload
measure in cycling is challenging and should be totally segregated from car driving tasks’
workload measures. For instance, while speed choice and its variability are commonly used to
investigate workload for car drivers, cycling speed cannot be reliably used as a workload measure
due to the influence of cyclists' behavior. Cyclists might not stop completely or dismount, fearing
a loss of stability at stop signs, which demonstrates an example where behavior significantly
impacts performance measures (Schwab & Meijaard, 2013). Another example is headway, an
appropriate measure for motor vehicles but holds less significance for bicycles due to their lower
volumes.

Physiological Workload Measures

Physiological measures serve as objective workload indicators, and their usage has experienced
significant growth thanks to advancements in sensor development and production (Tao et al.,
2019). They include electroencephalogram (EEG), electromyography (EMG), electrocardiogram
(ECQG), respiratory rate, and electrodermal activity (EDA). EEG is frequently employed for
measuring workload in aircraft pilots, but it has the disadvantage of being susceptible to influences
from factors unrelated to workload (Secerbegovic et al., 2017; Taheri Gorji et al., 2023). However,
cardiovascular measures, such as heart rate, blood pressure, and respiration, are also the most
studied in workload studies (Tao et al., 2019). Heart rate is sensitive to workload changes but is
impacted by emotions, physical effort, respiration, and other factors such as fatigue and noise.
Blood pressure is another common measure that has been described as unreliable if used alone
(Castor et al., 2003). Respiratory rates are used in occupational fields and fit more static/indoor
cycling studies. Respiration is used to correct heart rate measures but does not qualify as a
workload measure by itself (Wilson et al., 2004). Recently, a study demonstrated that the
perception of safety can be measured proactively with traveler biometrics, including eye and head
movements. The study concluded that high readings of biometric indicators correlate with less safe
areas, which makes those measures valuable for future workload studies (Ryerson et al., 2021).
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On the other hand, EDAs are good for sudden changes in workload levels, but they could be
impacted by temperature and are sensitive to secondary tasks. Authors have argued that EDA
appears to be the most dependable factor for inferring emotions, but quantitative validation of these
findings is still needed. Physiological measures are beneficial because they do not interfere with
the primary task, are easy to compare across studies, and do not require large sample sizes. The
same study, which summarized 91 studies from various databases, identified that physiological
measures had been used to understand pilots' (aviation), drivers' (motor vehicles), and operators'
(nuclear power) workloads. Standard measures were cardiovascular, eye movement, EEG,
respiration, skin sensitivity, EMG, and neuroendocrine measures accompanied by subjective
workload. The results emphasized the criticality of choosing the correct measure for the
application while cross-validation using different measures such as subjective, performance, or
both measures. Table 2 goes over candidate workload measures that have been used in the literature
and represent good candidates for cycling studies.
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Table 2. Comparison of Selected Workload Measures and their applicability in Cycling Environments

Test

Merits

Disadvantages

Recommendations

Subjective workload
measures

1 - Economically feasible
2 - Effortless
3 - Quick

1 - Difficult to be done during the
primary task (cycling)

2 - Prone to bias and perception

3 - Subjective measures cannot
provide moment-to-moment
assessment (Lal & Craig, 2001)

4 - Mistakes in understanding the
questions or/and instructions

1 - Complement by other workload
measures to overcome subjectivity

2 - NASA TLX ratings should be
collected within 15 mins after
cycling sessions (Moroney et al., 1992).

Heart rate variability

1 - Agood measure for e-bikes

2 - Decrease in heartrate is an

indicator of fatigue in car driving
(Lal & Craig, 2001)

1 - Prone toinfrastructure: for
example, terrain grades

2 - Different human capabilities
mean different recovery levels for
cyclists (Danieli et al., 2014)

1 - Complement by other workload
measures such as theta wave brain
power and subjective measures

2 - Better if a significant and diverse
sample size is used

Vigilance
(Reaction times or errors made)

1 - Indicator of fatigue mainly due to
sleep deprivation

2 - Possible indicator of boredom
(E. Grandjean, 1979)

1 - Impacted by age

2 - Impacted by environmental
factors such as noise, vibration, and

ambient temperature
(Davies & Parasuraman, 1982)

1 - Promising application for cyclists
with sleep disorders (. . Brown, 1967)

2 - Different personalities, anxiety,
and temperament impact results
(54)

Pupil diameter

1 - Measures variation in workload

2 - Good for laboratory experiments
and on-site

1 - Impacted by effort or fatigue and
emotional states (Cain, 2007; Murata, 1997)

2 - Vary by luminosity (Beatty & Lucero-
Wagoner, 2000; Qin et al., 2021)

1 - Pupil data collection suffers
distortion due to blinking and

requires extensive data processing
(Pomplun & Sunkara, 2003)
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Test

Merits

Disadvantages

Recommendations

EEG

(Delta activity, Theta frequency,
Alpha waves, and Beta waves)

1 - Delta activity measure transition
to drowsiness and sleep state

2 - Theta frequency is promising for
measuring low levels of alertness
(decreased information processing)
and time pressure

3 - Alpha waves are indicator of
alertness in relaxed state, memory
load, and task difficulty.

4 - Beta waves express increased

alertness, arousal and excitement
(E. (Etienne) Grandjean, 1988; Lal & Craig, 2001)

1- EEG is impacted by individual
abilities such as introversion and
extroversion, sex and spatial
abilities (Lal & Craig, 2001)

2 - Theta activity could be impacted
by age
3 - Alpha waves are impacted by

gender (Santamaria & Chiappa, 1987)

4 - No known application in
commuting cycling but high-
intensity cycling only (irvine etal., 2022)

5 - EEG is sensitive to fluctuations in
vigilance

1 - Beta waves are promising in the
area of reaction-time task (sheer, 1988)

2 - Some suggest EEG measurement
suffer higher drowsiness in

simulator setting in car driving (Halvig
etal., 2013)

3 - EEG data processingis a
promising area of research due to
high noise levels from eye blinking,
jaw clenching, muscle movement,
etc (Hogervorstet al., 2014).

Eye movement and blinks

1 - Easily quantifiable

2 - Describe transition from
wakefulness to drowsiness

1 - Influenced by factors not directly

related to workload such as fatigue
(Cain, 2007)

1 - Promising for future research as
indicator of fatigue and drowsiness
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Among the physiological measures, we specifically review two that have been previously utilized
in cycling experiments.

Electrocardiogram (ECG)

Monitoring the mental workload of cyclists is crucial for ensuring both performance optimization
and safety. One of the psychological techniques used to measure mental workload (MW) is the
ECG, which records the electrical signals in the heart. ECG is one of the most widely used
techniques for measuring the workload in driving tasks (Tan et al., 2019). Likewise, in dynamic
systems, such as transportation, where safety factors are critically important, ECG is considered
very sensitive to the MW (H. Qu et al., 2021) and has been tested in various research (H. Qu et al.,
2021; S. Qu et al., 2022; Tjolleng et al., 2017). During the state of high MW in an operator, the
cardiac load also increases, which leads to changes in the period of the ECG signal as well as the
shape of ECG signals (H. Qu et al., 2021). The Autonomous Nervous System (ANS), which is
responsible for governing our capacity to react to various external stimuli, is affected by mental
stress (Castaldo et al., 2015). Hence, interpreting ECG data to assess cognitive workload involves
analyzing various parameters that reflect ANS. Besides, studies have demonstrated a strong
correlation between ECG-derived metrics and cognitive performance, which is crucial for
decision-making and reaction times in competitive or high-traffic cycling environments (Backs &
Seljos, 1994).

Because of its practicality and non-invasive nature for field use, ECG is very suitable for
monitoring cyclists continuously without affecting their natural movements. For evaluating the
MW using ECG output, various methods such as time-domain, frequency-domain, and nonlinear
analyses are used. The statistical measurements, including mean, root mean squared differences
(RMSSD), and standard deviation (SDNN) of Inter beat intervals (IBIs), are performed in the Time
Domain Method (Tjolleng et al., 2017). The frequency domain method measures the power in low
and high frequencies (LF and HF) and the ratio of LF/HF (Tjolleng et al., 2017). Nonlinear
analyses include the measure of Sample Entropy, Correlation Dimension, Detrended Fluctuation
Analysis, and Approximate Entropy (Shaffer & Ginsberg, 2017). Each of the aforementioned
methods provides a comprehensive understanding of cognitive stress and fatigue, with each
method offering a distinctive view of how mental workload affects the heart rate (HR). Among the
various other indicators, the ECG indicators, which measure a driver's HR and its variability
(HRV) during a driving or tracking task, are the most widely used (Shakouri et al., 2018). HRV is
an equilibrium indicator between the parasympathetic and sympathetic aspects of the autonomic
nervous system. When the MW is high, HRV tends to decrease, whereas a low MW corresponds
to an increase in HRV. ECG measures have been used in various ways in cycling to assess and
manage MW, optimize performance, and ensure safety. Using the ECG, HRV was monitored
among the cyclists during the recovery phase after exercise, and it was found that HRV
measurements can be used as a recovery index (Salam et al., 2018). Likewise, the ECG was used
to measure the HRV to detect the emotional states of electric bicycle riders to improve the safety
of the cyclist as well as improve the riding experience (Dastageeri et al., 2019). Additionally, a
field-based study utilized ECG to measure cyclists’ workload, validating heart rate variability
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(AHRYV) levels against subjective survey measures (S. Qu et al., 2022). The CART algorithm
classified workload thresholds: normal condition (AHRV < 19), higher workload (19 < AHRV <
79), and highest workload (AHRYV > 79). In conclusion, ECG is a very effective method to assess
the MW of cyclists. By monitoring the HR and HRV, we can ensure the safety of cyclists and
integrate advanced technological solutions to support cyclists.

Eye Tracking

Methods for evaluating stress and mental workload in drivers however are well studied, and often
utilize eye tracking as one measure. Eye trackers are essential devices for monitoring where
cyclists look, providing researchers with valuable data on their gazing behavior, glances,
distractions, areas of interest (AOIs), gaze sequences, and durations. Additionally, eye tracking is
a well-established method for evaluating stress and cognitive workload not only in drivers but
across many fields, including fields unrelated to transportation (Ryerson et al., 2021). Eye tracking,
however, is not a singular task. Eye movement consists of saccades — quick eye movements with
short durations, smooth pursuits — movement in which the eyes smoothly follow a target, and
fixations — little to no movements of the eyes and held for a brief moment, additionally fixations
are separated by saccades. Each of these movements can be tracked with eye tracking technology
(Ahlstrom et al., 2012; Gadsby et al., 2021; Mantuano et al., 2017; Pashkevich et al., 2022; Rupi
& Kirizek, 2019). Fixations are often the most studied and useful for understanding factors
affecting cyclists. However, the researchers make use of an inbuilt gyroscope to measure head
movement, gaze velocity — a measure similar to saccades, and off-mean gaze distance — a measure
similar to fixation, and they found that the inclusion of head movement allowed for a better
understanding of mental workload (Ryerson et al., 2021).

Along with eye tracking not being synonymous with eye movement, eye tracking is also not a
singular technology. Generally there are two major types of eye tracking that are used in studies
concerned with mental workload, those being either mobile or “head-mounted” eye tracking,
which was used in (Gadsby et al., 2021; Mantuano et al., 2017; Pashkevich et al., 2022; Rupi &
Krizek, 2019; Ryerson et al., 2021), and remote eye tracking, which was used in (Ahlstrom et al.,
2012). Of the two types, mobile eye tracking, which is used in this project, is generally regarded
as the more favorable of the two, especially in naturalistic studies, due to less data loss, higher
accuracy, and a wider field of view relative to remote eye tracking. Mobile eye tracking, as
mentioned above in (Ryerson et al., 2021), can also be combined with gyroscopes to measure head
movement, which can provide an additional element of robustness to eye tracking studies. This
also allows for a deeper understanding of factors affecting cyclists, such as the presence or absence
of protections (Ryerson et al., 2021) or of the quality of the roadway (Gadsby et al., 2021).

Using eye tracking and galvanic skin response (GSR) in a simulator study, researchers examined
the effect of loading zones on cycling (Jashami et al., 2024). Results showed the lowest GSR levels
with commercial vehicles in maximum loading zones, while the presence of couriers increased
stress. Eye tracking revealed that cyclists fixated on trucks, particularly on hand trucks, with the
highest fixation time when couriers were moving. These findings are crucial for developing
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guidelines for loading zones near cycling lanes. Notably, two participants were excluded due to
simulator sickness, highlighting the advantages of naturalistic studies for certain conditions,
though simulators are valuable for studying hazardous scenarios.

Naturalistic Studies

The choice of a naturalistic study is a pivotal contribution to research on cycling, offering
significant advantages over controlled simulations. Naturalistic studies involve data collection in
real-world circumstances, eschewing control over parameters such as temperature, wind, lighting,
noise, drowsiness, and perceived safety—common limitations in simulated environments (Winter
& Happee, 2012). Naturalistic studies are particularly valuable in identifying pre-crash causal and
contributing factors (V. Neale et al., 2005). While such methodologies have proven successful in
automotive research, their application to active transportation, such as cycling, presents unique
challenges. Unlike vehicular environments, cycling involves diverse infrastructure, higher
interactions with other road users, and varying exposure to environmental elements and speeds.
Additionally, interpreting physiological data in cycling demands greater expertise due to the
interplay between physical exertion and physiological responses (Dozza & Fernandez, 2014).

Designing a naturalistic study for cycling necessitates a deep understanding of both the natural
environment and the limitations of the sensors employed. For example, electrodermal activity
(EDA), sensitive to sudden workload changes, is unsuitable for cycling studies due to its
susceptibility to ambient temperature variations (Qu et al., 2022). Electromyography (EMG), used
to detect muscle strain and movement, has limited application in assessing stress, comfort, or
workload levels without supplementary sensors and may interfere with cycling. In contrast, ECG
is chosen for its superior ability to measure stress and workload, integrating both mental and
physical aspects of the cycling experience (Hogervorst et al., 2014).

In summary, naturalistic cycling studies offer a robust framework for capturing authentic data,
essential for understanding the complexities of cycling behavior and safety. The strategic selection
of non-intrusive sensors and comprehensive study design enhances the reliability and applicability
of the findings in real-world cycling contexts (Dozza & Werneke, 2014).

Level of Service

Using naturalistic studies on bicyclists could help rethink methodologies for assessing Bicycle
Levels of Stress (BLTS). The Bicycle Level of Service (BLOS) was developed based on extensive
research, utilizing data from more than 250,000 miles of urban, suburban, and rural roads and
streets across North America (Landis et al., 1997). The BLOS intends to measure bicycling
suitability -or compatibility as recognized by FHWA- based on factors such as road and bike lane
widths, vehicle speed and type, pavement conditions, parking, and traffic volumes (FHWA, 1999).
One of the major benefits of BLOS is predicting route choice for cycling. There are many
methodologies for BLOS depending on the author of the method, such as Bicycle Safety Index
Rating, Florida Roadway Condition Index, Bicycle Interaction Hazard Score, Danish Bicycle LOS,
and Evaluation of Bicycle Suitability, among others (Pritchard et al., 2019).
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However, a significant drawback of the BLOS methodology is its reliance on factors such as
average annual daily traffic (AADT), target speed, and the number of through lanes. While these
metrics are feasible and simplified, they ignore many other factors that may impact cyclists' level
of stress, such as pavement quality, cyclists' mood, physical state, different intersection designs,
and the number of intersections per unit distance. To address these limitations, the use of
biosensors has emerged as a valuable tool to quantify and micromodel traffic stress, offering a
more comprehensive understanding than the current generalized BLOS.

Nowadays, many DOTs are using BLTS to design cycling and complete street infrastructure on
state roads. Two notorious examples are Oregon DOT and Washington State DOT (ODOT, 2024;
WSDOT, 2023). In the case of the Oregon Department of Transportation (DOT), BLTS is
associated with various types of cycling facility users. These users are categorized into six design
user profiles: highly confident, somewhat confident, interested but concerned, school-aged
children, adult bicycle groups, and families. These profiles are detailed in Table 3.

Table 3. Level of Traffic Stress and Desigh User Profiles Likelihood that User Profile will Ride
(Table 900-3 ODOT Manual)

Level of | Highly Somewhat | Interested School- Adult Family
Traffic Confident confident but aged Bicycle Group
Stress Individual Individual Concerned | Individual Group

Individual Child
BLTS 1 Likely Likely Likely Likely Likely Likely
BLTS 2 Likely Likely Sometimes | Sometimes | Likely Sometimes
BLTS 3 Likely Sometimes | No No Likely No
BLTS 4 Likely No No No Sometimes | No

BLTS profiles help planners understand the varying levels of comfort and stress experienced by
different types of cyclists, enabling more targeted and effective infrastructure improvements. For
example, a BLTS 1 route is suitable for all user profiles, ensuring a high level of comfort and
safety, while a BLTS 4 route might only be appropriate for highly confident cyclists and not for
more vulnerable groups like children or families.

To further enhance BLTS methodologies, incorporating naturalistic studies can provide deeper
insights into cyclists' real-world experiences. These studies use biosensors and other advanced
technologies to measure physiological responses to different cycling environments, capturing data
on stress levels, heart rate, and other indicators. By integrating this data, planners can refine BLTS
models to better reflect the nuanced factors affecting cyclists' stress, leading to more precise and
effective infrastructure designs.

The literature on evaluating cycling safety and workload identifies three main types of studies:
field-based, simulator, and naturalistic. Early research focused on validating human factors (HF)
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measures, but the scope has since expanded to develop practical applications. Historically, surveys
were the primary tool for quantifying perceived safety, offering the advantage of quickly gathering
data from large samples. While objective measures from biosensors provide precise data, surveys
remain invaluable for capturing aspects that biosensors cannot efficiently measure. The integration
of subjective and objective measures represents a significant advancement in the field.

Furthermore, while the BLOS has greatly enhanced our understanding of bicycling suitability,
there is a growing need to evolve these methodologies. Leveraging naturalistic studies and
advanced technologies can lead to more comprehensive and accurate assessments of BLOS,
ultimately creating safer and more enjoyable cycling environments for diverse user profiles.
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Data and Methodology

The team designed and conducted data collection. The different devices and specific setups of the
data collected are described in the following sections. Additionally, particular data cleaning
methods, analysis, and processes are explained here. As part of this project, we also conducted a
comparative study between different users. Figure 1 presents an overview of the project execution.

Experiment Setup

) Subjective Database
2 Measures 1
(] Socio- GPS !
'a;a demographics Data !
oc 1
Perf
2 Monoiros MAAS Eye Tracking ||
& : NASA TXL AOl Heat |
8 RPE Maps :
- e L D e L L B 1
- Physiological N7
Measures Conclusfons and

Recommendations

Figure 1. Overview Project Execution

Experiment Design

The data collection process was designed to gather accurate and representative subjective,
physiological, and performance data in a naturalistic setting, thus avoiding the inaccuracies often
associated with simulator environments. The data collection described in this study required
approval from the Institutional Review Board (IRB), which was obtained from the University of
New Mexico under Protocol Number 2403118510. The collected data included surveys,
electrocardiogram (ECG) readings, eye tracking data, and speed profiles. Details about the data
and devices used for each specific measure are provided in the following sections. However, a
summary of the collected data is presented in Table 4.

Table 4. Summary of Data Collected

Data Type Category Data collected
Pre-experiment Survey Subjective Measure Age
Gender
Transportation Habits
History of Crashes

Post-experiment Survey NASA TLX

Speed Profiles Performance Measure GPS Data

ECG Physiological Measure RMP

Eye Tracking data Gaze Behavior
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One of the major contributions of this project is the choice of a naturalistic study. ECG was chosen
as a superior measure of stress and workload because it provides a more direct and non-intrusive
assessment of physiological responses to these conditions. As part of the experiment, the research
team also recorded the time and day of the experiment, the temperature, and the wind speed. This
information would be used to make further inferences.

Subjective Measures

Subjective measures about respondents were collected before and after the ride during the
experiment (Appendixes A and B). We used Qualtrics and a mobile device (table or cellphone) to
request the information.

The introductory questionnaire began with a consent signature for participation in this study. Then,
sociodemographic characteristics such as age, gender, educational attainment, race, and household
composition were questioned. The questionnaire also asked the subjects if they had a driver's
license and had ever been in an accident while driving a car or riding a bike.

The following section inquired about travel habits and micromobility usage to assess the frequency

and purpose of trips. Additionally, we included questions about their decision to ride a bike and
their personality traits, which are summarized in Table 5, along with the corresponding sources.

Table 5. Pre-Survey Questions from Previous Studies

Section

Question

Source

Travel Habits and
Micromobility

Do they consider the time of day when you
cycle or use an e-scooter?

(Engbers et al., 2018)

Travel Habits and
Micromobility

Do you consider the weather when deciding
when to cycle or use an e-scooter?

(Engbers et al., 2018)

Personality Statements

How satisfied are you with your health?

(Engbers et al., 2018)

Travel Habits and
Micromobility

How likely are you to listen to music with
headphones while riding a bike or e-scooter?

(de Waard et al., 2010)

Travel Habits and
Micromobility

How likely are you to listen to music with a
speaker while riding a bike or e-scooter?

(de Waard et al., 2010)

Travel Habits and
Micromobility

How likely are you to talk to other cyclists,
passengers, pedestrians on your route?

(de Waard et al., 2010)

Personality Statements

How likely is it that you would ride
micromobility devices in the eight different
infrastructure.

(Bernhoft & Carstensen, 2008)

Personality Statements

Six statements from MAAS

(Brown & Ryan, 2003;
Young et al., 2020)
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For the post-ride survey, the questions were primarily based on the NASA TLX (Hart & Staveland,
1988; S. Qu et al., 2022) and the Borg RPE scale (Borg, 1982), with additional input from
secondary sources such as Nazemi et al. (2018). These questions aim to evaluate task performance,
improve system design, and understand user experience by identifying areas where workload can
be reduced. Given that the subjective measures were sourced from previous literature, particularly
those related to infrastructure usage, MAAS, NASA TLX, and the Borg RPE scale, we also
assessed their internal consistency using Cronbach's alpha. Cronbach's alpha values range from 0
to 1, with higher values indicating greater internal consistency. The interpretation of Cronbach's
alpha can vary by field, but the generally accepted thresholds are: o > 0.9: Excellent internal
consistency, 0.8 <a < 0.9: Good, 0.7 < a < 0.8: Acceptable, 0.6 <o <0.7: Questionable 0.5 < a <
0.6: Poor, a < 0.5: Unacceptable.

Performance Measures

The Gaia GPS app was used for our GPS tracking, which we had installed on the project mobile
device (Gaia GPS, 2024). Each subject had to carry a mobile device during the cycling experiment,
and the app tracked the GPS coordinates of each subject during the whole session. The app records
the paths and offers distance, elevation, and speed data. Furthermore, the app provides a visual
representation of the tract covered by each subject and a graph, enhancing our ability to analyze
and interpret the data effectively. The app recorded each survey session's start and end times, along
with the subjects' moving speeds and any periods when they stopped. The coordinate data of each
subject was recorded on the Gaia app. The recorded GPS coordinates on the Gaia app were later
extracted to analyze the data.

Physiological Workload Measures

Two physiological measures were collected as part of the experiment: ECG and Eye Tracking
Data. For the ECG, Polar Verity was used to measure the heart rate of each subject. The device
measures the heart rate with maximum precision while engaging in high-intensity exercise (Polar
US, 2024). Furthermore, the device was connected to the experiment mobile device through
Bluetooth and ANT, allowing for the real-time monitoring of heart rate data in the field. During
the survey, the subjects were made to wear the device on their forearm, which was connected to a
mobile device that each subject had to carry during their cycling session. Because of its portable
size of 65 mm %34 mm %10 mm and weight of 60 grams, it did not create any obstacles during the
riding session for each subject. ECG data of each subject was recorded on the Polar app on the
mobile phone. The recorded ECG data was later extracted from the Polar app to analyze the data.
The Polar app also provided a graphical representation of the heart rate in BPM throughout each
session, offering insights into the subjects' heart conditions during their rides.

The second device considered to capture physiological workload measures was the eye tracker.
The eye tracker used in the experiment is the Neon by Pupil Labs. The eye tracker makes use of
multiple cameras: one camera per eye and a forward-facing scene camera. The eye tracker also
contains an accelerator, magnetometer, gyroscope, and dual microphones. Additionally, the tracker
can hold up to 25 hours of storage, and the onboard battery can support up to four hours of
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recording. The data processing included eye fixation, our primary focus, along with additional
factors such as blink data. The data collected were uploaded to the Pupil Labs cloud for further
processing. Using Pupil Labs software, the data were analyzed to ensure accurate and
comprehensive results. This approach highlights the role of Pupil Labs devices and services in
both data collection and processing, which strengthens the reliability and precision of the
measurements. The eye tracker’s frame weighs 30 grams and is constructed from PA12 nylon and
CNC-machined anodized aluminum. This lightweight design minimizes any impact on the cyclists,
ensuring naturalistic behavior during the experiment. The lens material is reflective, dust-resistant,
and water-repellent, as shown in Figure 2.

A recent study evaluated the accuracy of the Neon eye tracker in assessing gaze-estimation
precision (Baumann & Dierkes, 2023). The findings demonstrated that the eye trackers function
robustly across various lighting conditions, from total darkness to bright sunlight, and
accommodate different eye appearances and head positions. Detailed results of this validation are
available in the "Neon Accuracy Test Report" by Baumann & Dierkes, (2023).

Figure 2. Neon's Eye Tracker

For equity considerations, Neonnet was trained using a diverse dataset that included a wide range
of eye and skin colors, as well as variations introduced by contact lenses. Additionally, the training
data encompassed different facial geometries and eye makeup, ensuring an inclusive data
collection process. The frame used in the Neon eye tracker is lightweight and adjustable, providing
a comfortable experience for users with varying head sizes. Furthermore, the Neon eye tracker is
compatible with or without helmets, ensuring maximum safety for bicycle riders.

Route Description

The route was roughly 1.4 miles, starting and ending at the Lobo Bike Shop (Yellow pin on Figure
3) on the UNM campus. The main intersections on the route (listed in clockwise order) are
Redondo Dr. NE & Campus Blvd NE, Girard Blvd NE & Campus Blvd NE, (Girard Blvd NE/SE,
Monte Vista Blvd NE, & Central Ave SE/NE, #1 in figure), Girard Blvd SE & Silver Ave SE (#2
in figure), Stanford Dr. SE & Silver Ave SE, (Stanford Dr. SE/NE & Central Ave SE/NE), and
Stanford Dr. NE and Redondo Dr. NE. A map of the route is presented in Figure 3.

The route encompasses five distinct bike infrastructure types. Beginning from the starting point
and extending to the Girard Blvd NE & Campus Blvd NE intersection, this segment is designated
as a bike route according to the Albuquerque Bike Plan. However, it lacks specific infrastructure
tailored for cyclists. Transitioning into Girard Blvd SE, the landscape changes with three distinct
types of cycling infrastructure. Sections marked in yellow boast buffered lanes featuring a 1.8-foot
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buffer and a width of approximately 3.6 feet. In blue, designated bike lanes span about 3.7 feet
wide, delineated by a mix of bolded and dashed lines for separation from vehicular traffic of 0.5
feet. Meanwhile, areas highlighted in light green solely feature Shared Lane Markings (SLMs),
also known as “sharrows.” Silver Ave, depicted in purple, embodies the concept of a bicycle
boulevard. These streets are designed to prioritize bicycle travel, characterized by low motorized
traffic volumes and reduced speeds—capped at 18 miles per hour in this case study. Signage and
pavement markings further augment safety measures and minimize interference from motor
vehicles. Conversely, Stanford Dr. NE presently lacks specialized cyclist infrastructure.
Nonetheless, it is a proposed bike route in the upcoming Albuquerque bike plan.
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Figure 3. Infrastructure type and signals along the route

Along the route, there is also a variety of unsignalized and signalized intersections. Intersections
are where we expect to observe higher stress levels in the cyclists, and the focus of this report.
Notably, in the clockwise direction, there is a large elevation gain going from Girard Blvd NE &
Campus Blvd NE to Girard Blvd NE/SE, Monte Vista Blvd NE, & Central Ave SE/NE, so we may
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observe an increased heart rate from this alone or in addition to stress. Across the route, there is
an increase in elevation of 39' and a decrease in elevation of 39', with a net zero change in elevation.
Figure 4 shows the current bicycle levels of traffic stress for the route as per City of Albuquerque
guidelines. Most of the routes have nonexistent levels, while Girard and Silver are estimated to be
at BLTS 1. Level of Stress 1 is often comfortable for all types of cyclists (Mekuria et al., 2012).

@ Stops
g Bike and Turn Markings 2021
Bike Path LTS
BikeLTS
== Not Calculated

Figure 4. Bicyclist Level of Streets on Route

Finally, Figure 5 shows the roadway levels of traffic stress for the route’s vehicular infrastructure.
The map shows three different levels of traffic stress (LTS). Around Redondo, Girard, Silver, and
Sandford, the segments are classified as LTS 1, Campus is classified as LTS 2, while Girard Blv.
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between Central and Silver is classified as LTS 4. In this case, LTS refers to the level of stress
considering all users of the road, not only cyclists. An LTS of 1 represents, again, a comfortable
street to ride. Many residential streets are also classified as LTS 1 because they have low traffic
volumes and slower vehicle speeds. An LTS of 2 serves most people who are interested but
concerned. Despite the presence of bike lanes and signage, LTS 4 remains a high-stress bikeway
due to its high traffic volume, posted speed limit, and lack of separation between motorists and
cyclists. This route primarily appeals to only the most confident bicyclists.

Signalized Intersections on Route > W,
S

@ Stops
Bike and Turn Markings 2021 N
~ Roadway LTS

RoadlLTS

Figure 5. Roadway Level of Streets on Route
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Data Collection

The data collection consisted of participants who were adults older than 18 years old and had
bicycle experience. Our sample ranged between 19 to 40 years old and an average of 31.6 years
old. We recruited participants regardless of self-identified sex, resulting in 14 males, four females,
and two non-binary individuals. All our subjects have a U.S. driver’s license. Data collection
occurred in May 2024, with temperatures ranging from 57°F to 88°F and an average of 72.6°F.
Wind speeds varied from 3 to 23 mph, averaging 12.52 mph. The experiment was conducted in
three consistent phases, as described below.

Phase 1. Initial Phase

The initial phase consisted of three sub-steps. First, a tablet was used to obtain participants’ consent
and to administer the pre-ride survey, which included subjective questions. Those questions were
discussed in the previous section and are attached in Appendix A. Additionally, the participants
wore the different devices used as part of this study that aim to capture the heart's electrical activity
using an electrocardiogram, gaze movement utilizing the eye tracking device described before, and
a helmet. Once the participant had the equipment on, we collected one-minute heart rate
measurements and calibrated the eye tracker to account for each participant's specific eye
movements. The participants were also offered to wear a vest and a helmet. The data collected
from the wearable biosensors was stored in the device and later downloaded to a computer as a
.csv file to further process. To de-identify that procedure, each participant was given an ID that
served to connect the different information.

Additionally, the researchers collected other important data to consider in the analysis, such as the
time of the start of the first ride, the temperature (in Fahrenheit), and the wind and gust speed at
the start time. This part lasted approximately 15 minutes.

Phase 2. Bike Ride

The participant used the devices presented in the previous section, such as a heart rate sensor on
the wrist and an eye tracker. Additionally, participants were given a belt bag to store the phone
connected to the devices and GPS. The cyclists were shown a map of the route described in the
previous section and were randomly assigned to start their ride in either direction. Participants
were expected to take roughly 10 minutes to complete the route in either direction. However, they
were instructed to ride at their own pace, cycling as they would on a normal day. All participants,
except one, completed the route a second time in the opposite direction. This approach served to
(i) double the amount of collected data, (ii) normalize route direction, and (iii) provide more
individual cyclist information. Additionally, it was hypothesized that as cyclists become more
familiar with a route, they may experience less stress, similar to a regular commute. Completing
the route twice offered a simplified simulation of this effect. It is important to mention that
participants were also allowed to take a five-minute break between both rides. This part of the
experiment lasted about 30 minutes.
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Phase 3. Final Questionnaire

Once the two rides were completed, the participants returned the sensors to the researcher and
completed the post-ride survey, which asked about their reactions to the experiment and can be
found in Appendix B. Participants received a $20 Amazon gift card as compensation. The gift card
was handed to the participant after completing the experiment, and no signature was required since
they had already signed a consent form. If participants withdrew during part 2 of this 3-part study,
they were compensated based on their participation in parts 1 and 2. For example, a $5 Amazon
gift card was given to those who completed the consent form, and a $15 gift card was given to
those who completed the ride but did not finish the remainder of the study. This compensation was
deemed appropriate as it exceeded the minimum hourly wage in Albuquerque, which is $12 per
hour. This phase of the experiment was expected to last about 5 minutes.

Exploratory Data Analysis

Subjective, performance, and physiological measures were meticulously cleaned and processed to
demonstrate their capabilities and derive insights for this report.

For subjective measures, we provide descriptive statistics, and comparative analyses using
variables collected from questionnaires and ride-related information. The data, initially recorded
in Qualtrics, was exported to Excel for cleaning and preliminary analysis. Pivot tables were utilized
to interpret responses and generate graphs. Subsequently, the data was analyzed in Stata 16 to
identify correlations and conduct further analyses. Given that subjective measures were collected
both before and after the experiment, we also discuss their applicability in naturalistic experiments.
Two analyses were conducted regarding performance and physiological measures. The team
combined ECG data, often associated with stress, with GPS data to identify areas where
participants experience higher stress levels. For this report, we will examine both ECG and GPS
data from two specific intersections along the route, each with distinct characteristics. The first
intersection is at Central Avenue and Gerard Avenue, and the second is at Silver Boulevard and
Gerard Avenue. These intersections were selected for their different features.

The first intersection is a complex five-way intersection with traffic lights featuring a mix of
protected bike lanes and buffered lanes. The second intersection has a median with a rest area for
cyclists, making it easier to navigate. For the analysis, we separated the data collected 30 seconds
before and after each intersection. We also included the heart rate and speed profiles of the subjects
as they crossed the intersections. Various graphs were created to showcase the subjects' actions at
the intersections. Additionally, we compared the first and second rides to determine if the second
ride was less stressful. These analyses were performed using Excel.

Eye tracker data was processed using the Pupil Labs’ Pupil Cloud web-based tool. The Pupil Cloud
initially stored the participants' recordings, which could later be downloaded in .csv or other file
formats. Additionally, the Pupil Cloud tool facilitated creating AOI heatmaps to visualize gaze
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patterns on AOIs with metrics such as dwell time, time to first fixation, and average fixation
duration.

For this analysis, we focused on the two intersections described earlier to create a visual
representation of the objects the subjects were considering while at the intersections (#1 and 2 in
Figure 3). We expected subjects to fixate on signs, signals, and other vehicles or pedestrians they
encountered before, during, and after crossing the intersections.

Creating the AOI heatmaps involved two main processes. First, the team recorded videos of the
intersections and took pictures to create a Reference Image Mapper or Marker Mapper enrichment.
Then, AOIs were delineated on the reference images or surfaces. These two steps enabled the
creation of the heatmaps.
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Results

Subjective Measures

Subjective measures were captured using pre- and post-ride questionnaires. From our sample, we
observed that 70% of the volunteers were male, mirroring the percentage of male cyclists in the
U.S. The average age of the male subjects was 33 years, while the average age of non-male subjects
was 27.7 years, which also aligns with national cycling trends in the U.S. (Velotric, 2023). This
also applies to the statistics on commuter bikers in Albuquerque (Table 6). Using a test of
proportion, we compared our sample with the commuter bike population in Albuquerque using the
2022 American Community Survey’s (ACS) 5-year estimate. According to the test, there is no
significant statistical difference between our sample and the population in terms of gender. Our
sample included three gender categories: female, male, and non-binary/third gender, the latter of
which is not represented in the ACS data. When we combined the non-binary and female
categories, our sample still showed no significant statistical difference from the general population.

Regarding age, our sample did not show a significant statistical difference for individuals younger
than 24 years old. However, there was a significant difference between those aged 25 and those
who were older. The majority of participants in our sample were between 25 and 44 years old,
whereas this age group only represents 44% of bike commuters in Albuquerque.

Table 6. Comparison between sample and bike commuters in Albuquerque

ACS 5-year
Study Sample estimate 2022
Characteristics (n=23) (n=2081, 0.8%) p-value

Male 70% 16 68% 1418 0.84

Non-Male 30% 7 32% 663 0.84

16 to 19 years 4% 1 3% 57 0.78

20to 24 years 9% 2 9% 180 1.00
25to 44 years 87% 20 44% 912 <.00001 ool
45 years and over 0% 0 45% 932 <.00001 folell

Upon further examination, our sample is highly educated, with 60% holding a bachelor's degree
or higher. This may be attributed to our recruitment efforts, which were primarily conducted on a
university campus and within work commuter groups. Additionally, 56% of our sample identified
as Hispanic or Latino. Overall, 13% identified as Asian, 52% as Caucasian or White, and 34.74%
as Other. On average, participants lived in households with 2.1 inhabitants. In terms of crashes,
subjects in our sample reported fewer bike crashes compared to car crashes over the past three
years, with seven reporting car crashes and only four reporting bike crashes.
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The subjects who participated in the experiment primarily commuted by bike to work or school
(Figure 6). However, for grocery shopping, personal errands, and social recreation, they preferred
to use a car.

Drive alone (car/motorcycle, etc.) _
. [
Others F
0% 10% 20% 30% 40% 50% 60% 70% 80%

W Work/School M Grocery and other shopping M Personal business (such as errands) M Social/recreational

Figure 6. Primary mode of travel for each trip purpose

In our sample, individuals most frequently traveled for work or school. Additionally, social and
recreational trips were more common than trips for personal errands or grocery shopping (Figure
7).

Personal business (such as errands) -

Grocery and other shopping

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0 1 2-3 m4-5 m6-7 m8ormore

Figure 7. Trip frequency for each trip purpose
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Figure 8 presents the likelihood of subjects using various types of infrastructure while biking (or
using micromobility devices). Overall, subjects were highly likely to use routes with cycle paths
or marked lanes at crossings. They also expressed a moderate to high likelihood of riding where
there is good street lighting, smooth surfaces on cycle paths, minimal traffic, and signalized
crossings. A notable percentage of subjects indicated they were extremely unlikely to use the
fastest route.

(h) Good street lighting

(g) Marked cycle/e-scooter lanes in the crossings
(f) The fastest route

(e) The presence of signalized crossings

(d) A most direct route

(c) A smooth surface on the cycle path/road

(b) The route with the least traffic

(a) A route with a cycle path
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Extremely unlikely ® Somewhat unlikely B Neither likely nor unlikely B Somewhat likely B Extremely likely

Figure 8. Likelihood of riding on different types of infrastructure

Further exploring differences between male and non-male participants in our sample, we found no
major differences between males and non-males when comparing the means in most questions
related to infrastructure (Figure 9). Despite the small sample size, we conducted t-tests and
confirmed no significant differences between these two groups when analyzing certain statements.
Non-males showed a higher preference for riding on smooth surfaces compared to males (p =
0.0782 at a 90% confidence level). Additionally, non-males were more likely to prefer the most
direct route compared to males (p = 0.0884 at a 90% confidence level).
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Figure 9. Differences between male and non-male in infrastructure preferences

The MAAS was evaluated in the pre-ride survey. Figure 10 presents the overall results from our
sample. The statement with the highest level of agreement was, “I find myself listening to someone
with one ear, doing something else,” indicating a certain level of distraction among participants.
Conversely, participants disagreed with the statements that they perform tasks without paying
attention and that they drive to places on automatic pilot.

(f) I find myself doing things without paying attention.

(e) I drive places on ‘automatic pilot’ and then wonder
why | went there.

(d) I find myself listening to someone with one ear, doing
something else.

(c) I do jobs or tasks automatically, without being aware of
what I'm doing.

(b) I tend to walk quickly to get where I’'m going without
paying attention.

(a) I find it difficult to stay focused on what’s happening in
the present.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Strongly Disagree M Somewhat disagree M Neither agree nor disagree B Somewhat agree B Strongly agree

Figure 10. MAAS General Results

An analysis of gender differences in MAAS statements did not reveal any significant differences
(see Figure 11Figure 15).
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Figure 11. Differences between male and non-male in MAAS

The NASA Task Load Index (TLX) was evaluated using the post-ride questionnaire. This set of
questions typically includes at least nine levels of ranking, with various statements assessing
different outcomes (Appendix B). For all statements, a rank of 1 indicates the minimum agreement,
while a rank of 8 indicates the maximum (Figure 12).

Our findings indicated that participants were less likely to report feeling insecure, discouraged, or
irritated during the task. Additionally, participants did not feel that they had to exert significant
effort to achieve their performance level. The majority of participants believed they were highly
successful in accomplishing the task assigned by the research team. Overall, respondents ranked
the task as more mentally demanding than physically demanding.

(f) How insecure, discouraged, irritated, stressed, and
annoyed were you?

(e) How hard did you have to work to accomplish
your level of performance

(d) How successful were you in accomplishing what
you were asked to do?

(c) How hurried or rushed was the pace of the task?

(b) How physically demanding was the task?

(a) How mentally demanding was the task?

EO N1l m2 w3 m4 m5 m6 m7 8
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Figure 12. NASA TLX Responses
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In the NASA TLX survey, gender differences were observed in responses to two specific
statements (Figure 13). First, regarding the statement “How hurried or rushed was the pace of the
task?”, non-male participants reported feeling less hurried compared to male participants, with a
p-value of 0.0536 at the 90% confidence level. Second, in response to the statement “How
insecure, discouraged, irritated, stressed, and annoyed were you?”’, non-male participants reported
significantly lower levels of these feelings, with a p-value of 0.0381 at the 95% confidence level.

8.0
6.0

4.0

' ll | ]

L] | .
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B Male B Non-male

o

Figure 13. Differences between male and non-male in NASA TLX

The Borg RPE scale was incorporated into the post-ride questionnaire to assess participants'
perceptions of physical workload. Four questions from the original Borg scale were included to
capture these perceptions (see Figure 14). Overall, participants reported experiencing rapid or very
rapid breathing and a fast heart rate. However, they did not report significant fatigue or excessive
sweating.

(c) How tired are your muscles? _

0% 10% 20%  30%  40% 50% 60% 70% 80% 90% 100%

Very Low ®Low M Neutral EHigh ®VeryHigh

Figure 14. Borg RPE General Responses

An analysis of gender differences revealed no significant differences in responses to the RPE Scale
questions (see Figure 15).
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Figure 15. Differences between Male and Non-male in Borg RPE Scale

Finally, the internal consistency of the scales was assessed using Cronbach's alpha. The sample
size for this analysis was 23 participants. The scales, consisting of 4 to 8 items, yielded a
Cronbach's alphas between 0.72 and 0.78, indicating acceptable internal consistency. This suggests
that the items measure the same underlying constructs reliably. The only exception was the NASA
TLX construct, which yielded poor internal consistency.

Table 7. Internal Reliability

Scale Number of Items Cronbach's alpha
Infrastructure 8 0.72
MAAS 6 0.78
NASA TLX 6 0.57
Borg Rate of Perceived Exertion 4 0.73

Subjective, Physiological, and Performance Measures

This section explores the use of subjective, physiological, and performance measures to study
stress levels at intersections. Figure 16 shows the mean BPM at every intersection based on the
respondents' stress levels from NASA TLX, covering both directions (Ist direction and 2nd
direction). The X-axis represents the stress level, which is classified into four categories: 0, 1-2,
3-4, and greater than 4, and the Y-axis represents the mean BPM ranging from 0 to 170 BPM.
Histogram bars represent the mean BPM at every intersection for various reported stress levels
among all subjects (subjective and physiological measures). The straight horizontal line represents
the overall mean BPM of riding sessions for all subjects, covering both directions. We observed
that even when reporting greater stress levels, the mean BPM was similar for all riders, with no
direct lineal relationship.
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Figure 16. Mean BPM at various intersections.

Figure 16 also shows that the mean BPM at every intersection for subjects with different categories
of reported stress levels is generally above the overall average BPM of riding sessions for all
subjects. The only exception is at the Girard intersection, where the average BPM for subjects with
a reported stress level of greater than 4 matches the overall mean BPM of riding sessions for all
subjects, covering both directions. Similarly, with an increased BPM, it can be generalized that
there is an increase in physical exertion or stress level. From this, it can be inferred that most
subjects with different reported stress levels experienced more significant stress at intersections
than the rest of the session.

Figure 17 displays the reported stress levels from the NASA TLX questionnaire and the mean
BMP for each intersection, considering only the first direction of the ride each individual
performed. In the figure, the mean BPM at every intersection for subjects with different categories
of reported stress levels is generally above the overall average BPM of riding sessions for all
subjects. The only exceptions are at the Girard intersection and Girard/Central intersection, where
the mean BPM for subjects with a reported stress level of 1-2 and greater than 4, respectively,
matches the overall mean BPM of riding sessions for all subjects in the 1st Direction of their riding
session. Likewise, as BPM increases, there is an increase in the stress level or physical extortion,
so there is an increase in stress level at most of the intersections for every subject with different
reported stress during their riding session in 1st direction compared to the rest of the session.
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Figure 17. Mean BPM at each intersection for 1st direction and reported stress level.

Figure 18 displays the reported stress levels from the NASA TLX questionnaire and the mean
BMP for each intersection, considering only the second direction of the ride each individual
performed. The mean BPM at every intersection for subjects with different categories of reported
stress levels is generally above the overall average BPM of riding sessions for all subjects. The
only exceptions are at the Silver intersections and Girard intersection, where the mean BPM for
subjects with a reported stress level greater than four matches the overall mean BPM of riding
sessions for all subjects in the 2nd direction of their riding session. Additionally, for every
intersection, the mean BPM for subjects with a reported stress level of 3-4 is below the overall
mean BPM of riding sessions for all subjects in the 2nd direction of their riding session. Similarly,
with an increased BPM, it can be generalized that there is an increase in physical exertion or stress
level. From this, it can be inferred that most of the subjects with different reported stress levels,
i.e., 0, 1-2, and greater than 4, experienced more significant stress at intersections compared to the
rest of the session during their riding session in the 2nd direction. Whereas the subjects with
reported stress levels, i.e. 3-4, experienced a lower stress level at every intersection compared to
the rest of the session during their riding session in the 2nd direction.
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Figure 18. Mean BPM at each intersection for 2nd direction and reported stress level.

Figure 19 represents the BPM at different times during the riding session for a random single male
subject. The X-axis represents the time (performance), and the Y-axis represents the BPM
(physiological), which ranges from 0 to 180 BPM. The irregular line illustrates the subject's BPM
fluctuations throughout the session. In contrast, the straight horizontal line signifies the mean BPM
for the entire session. The grey-shaded area highlights the intersection area for the riding session,
which represents 30 seconds before arriving at one intersection and 30 seconds departing from the
other one. It is clear from the graph that the BPM at the intersection area is above the average BPM
for the subject during the ride session. As the BPM increases, there is an increase in stress or
physical extortion, so it can be inferred that the stress level around the intersection is higher than
the other part of the route.
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Figure 19. BMP along a route on a single ride for a male subject

Figure 19 and Figure 20 show that the BPM at the intersection area is above the average BPM for
both male and non-male subjects during the ride session. As the BPM increases, there is an increase
in stress or physical extortion, so it can be inferred that the stress level rises around the intersection
and in the moments surrounding it compared to the whole riding session.
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Figure 20. BMP along a route on a single ride for a non-male subject

Additionally, we used AOI heat maps to showcase areas where respondents were fixing their views
during the same intersections considered above (physiological measure). For example, Figure 21
compares the Gerard/Central intersection for clockwise (CW) or south-north view and
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counterclockwise (CCW) rides or north-south view. In both scenarios, subjects primarily focus
straight ahead and toward the lower light. This may be due to the riding position of cyclists, which
makes the lower light more convenient. It appears that the direction of travel is not a significant
factor for riders, as the heatmaps indicate a consistent focus regardless of direction. This is further
supported by the heatmap of the Girard/Silver intersection (Figure 21, c), where riders
predominantly look straight ahead. Although this heatmap cannot be directly compared with the
others, it reinforces the idea that cyclists generally focus straight ahead on intersections, regardless
of direction.

-0%

a)Girard/Central SN view (CCW) b)Girard/Central NS view (CW) c)Silver/Gerard WE view (CCW)
Figure 21. AOl Heat Maps at Intersections

Figure 22 and Figure 23 illustrate each intersection, broken down by direction and rider gender. In
all three cases, we observe that the 16 male subjects have much narrower areas of focus, while the
seven non-male riders exhibit a broader area of focus. Specifically, at the intersection of Girard
and Silver, male riders primarily look straight ahead, whereas non-male subjects tend to look
further into the intersection along their direction of travel.

- 0%

a)Girard/Central SN view (CCW) b)Girard/Central NS view (CW) c)Silver/Gerard WE (CCW)
Figure 22. AOl Heat Maps at Intersections for Male Subjects Only
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Girard/Central SN view (CCW) Girard/Central NS view (CW) Silver/Gerard WE view (CCW)
Figure 23. AOIl Heat Maps at Intersections for Non-male Subjects Only

Finally, Figure 24 and Figure 25 present each intersection, broken down by direction and whether
the ride was the first or second completed. Although the differences between the first and second
rides are smaller compared to those between non-males and males, an interesting pattern emerges.
At each intersection, the area of interest was consistently larger for riders on their second ride than
for those on their first ride.

-0%

Girard/Central SN view (CCW) Girard/Central NS view (CW) Silver/Gerard WE view (CCW)
Figure 24. AOl Heat Maps at Intersections for first ride

-0%

Girard/Central SN view (CCW) Girard/Central NS view (CW) Silver/Gerard WE view (CW)
Figure 25. AOl Heat Maps at Intersections for second ride
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Based on the literature, scanning while in motion is a stress response (Ryerson et al., 2021).
However, to the author's knowledge, there have not been studies on scanning while at a signalized
stop, which could not directly indicate a stress response, as cyclists likely feel some protection in
this situation. Hence, further investigation is needed to draw definitive conclusions.
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Discussion

This section will present the results in two parts: the first will examine workload measures and the
insights derived from the data collected in this study. The second subsection will analyze the data
collection process, reflecting on lessons learned for future research utilizing naturalistic
experiments and datasets to inform non-motorized infrastructure.

Workload Measures

The subjective measures capture various aspects of cyclists' workload. Drawing on established
scales such as NASA TLX and Borg RPE, the post-cycling survey assessed physical exertion,
motivation, distraction, and mental demand. These multidimensional survey questions were
evaluated for internal consistency using Cronbach's alpha. The indices reveal that subjects
frequently engage in multitasking (MAAS). They do not find the task to be physically or mentally
demanding (NASA TLX); however, they report high frequencies of heart and breathing rates,
which could also serve as indicators of performance workload (Borg RPE).

Subjective measures also provide invaluable insights that objective measures cannot capture, such
as age, collision history, route planning preferences, and educational level. This information is
essential for understanding the relationship between cultural and socioeconomic factors and the
decision-making processes and preferences of cyclists when planning and navigating
infrastructure. It also enables measurement of subjects’ comfort levels and frequency of cycling.
However, a limitation of subjective measures is their inability to capture moment-to-moment data
without disrupting the naturalistic setting. Therefore, it is crucial to complement these findings
with objective measures to understand the outcomes derived from the subjective data fully.

Combining ECG and subjective measures, we observe the relationship between stress levels and
mean BPM at various intersections along the route, providing valuable insights into the
physiological impact of stress during riding sessions. Likewise, subjects experienced an increased
BPM at specific periods, particularly around the intersections area. Furthermore, both graphs not
only provide the information mentioned above but also have practical purposes. These analyses
can be used to understand BPM for training optimization for long-distance cyclists and to identify
stress triggers, such as certain maneuvers or terrains. Regarding safety and health monitoring, the
graphs and analyses could help detect abnormalities and prevent overexertion. Similarly, these
analyses hold practical purposes for research and development as well. By understanding how
stress is related to BPM at various intersections, we can create a safer and more efficient road,
which could also lead to safer commuting.

Eye tracking data can capture numerous variables, such as fixation points, saccades, and pupil
dilation. This data is a powerful tool for creating heat maps that illustrate where cyclists focus their
visual attention. Variables like the sequence, frequency, and duration of eye fixations provide
insights into cyclists’ scanning behavior and decision-making processes.
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The eye-tracking data for this project highlight two intersections (Figure 4) located in segments
with high BLOS. A consistent pattern emerged among riders, with most looking straight ahead at
the intersection. However, when analyzing the data by gender, a different pattern was observed:
males tended to look straight ahead, while non-males scanned the intersection more broadly.
Several hypotheses could explain these observations, but further research is necessary to draw
definitive conclusions. One possibility is that the broader area of focus among non-male riders is
due to the smaller sample size, which could influence the aggregation results. Alternatively, non-
male riders might exhibit broader focus due to higher stress levels, greater observational
tendencies, or different levels of focus compared to male riders. To substantiate these hypotheses,
further investigation into eye-tracking studies by gender is required. Additionally, comparing these
observations with survey results might provide further insights. For example, non-male riders
might report a higher mental workload or male riders might have more cycling experience, among
other potential factors. What is evident from the heat maps is that non-male riders display a wider
range of fixation points compared to male riders.

At each intersection, the area of interest was consistently larger for riders on their second ride than
for those on their first ride. This may suggest that riders became more comfortable with the
intersection on their second approach, even though they were coming from a different direction.
For example, at the Central/Girard intersection, riders on their first attempt seemed to focus
primarily on the signal, likely because the intersection was new to them, and they did not want to
miss the light. On the second ride, however, riders were more likely to look around, being familiar
with the lengthy light cycle yet still maintaining a forward focus overall. In terms of commuting,
we can infer that increased exposure to an intersection leads to greater familiarity, prompting riders
to look around more.

Combining eye-tracking data with survey results and ECG data offers a comprehensive
understanding of cyclists’ experiences. For example, an increase in stress levels captured by ECG,
coupled with increased eye fixation, indicates a higher workload and a perception of unsafe
infrastructure.

Another example of combining metrics involves subjective and physiological measures. Increased
mental workload is often associated with longer eye fixations. High workload levels strongly
correlate with decreased cycling speeds, as cyclists slow down to better scan and process their
surroundings, thereby reducing the risk of errors. Additionally, higher physical demand is directly
linked to increased heart rates. Distraction, another important factor identified in the survey, can
be detected through eye-tracking data. These distractions and eye glances are crucial for ensuring
the safety of all road users, as they are often implicated in collisions categorized as "looked but
failed to see."

Data Collection - Lessons Learned and Future Research

One of the key strengths of this study design is its high external validity due to conducting
environmental research in real-world settings, although this approach also presents certain
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challenges (C. Neale et al., 2020). One significant lesson from this endeavor is the careful planning
involved in purchasing the sensors. An unexpected situation arose when the GPS embedded in the
ECG device stopped working. However, the pre-arranged use of a mobile GPS allowed for
flexibility and continuity in the data collection process.

The authors engaged with various sellers to understand the capabilities of the sensors and the
processing software each seller developed. This communication ensured that the sensors would
meet the specific needs of the experiment, including considerations for cycling movements and
sweating. Additionally, it was important to confirm that the sellers would provide technical support
during the experiment. Another key lesson is the importance of ensuring all team members fully
understood the experiment's procedures and could effectively communicate these to the
participants. Sharing the experiment design with the biosensor sellers also proved beneficial, as it
helped in selecting the most suitable sensors and gaining valuable insights from the manufacturers.
Close collaboration with the sellers/manufacturers and efficient teamwork among the research
team members were crucial for the successful data collection.

An additional key finding of this study is derived from the information gathered from the recruited
participants. Despite informing participants that caffeine consumption or other habits might impact
the measurements, at least one participant reported consuming a caffeinated beverage before the
experiment. Furthermore, another participant disclosed having a heart condition but was also a
frequent bicycle commuter. It is crucial to account for these unexpected outliers in future studies.

During the course of this project, it was observed that some subjects were wearing glasses, which
appeared to impact the eye-tracking data. These subjects still had a significant number of tracking
points, but they had fewer fixation points—often several hundred fewer compared to subjects not
wearing glasses. For instance, subjects without glasses typically had over 1,000 fixations, whereas
those with glasses might only have around 700. However, a subject wearing sunglasses had a
number of fixations comparable to those of subjects not wearing any glasses, suggesting that the
position of the eye tracker (whether placed before or after the glasses) might influence the results
more than the mere presence of glasses. This discrepancy suggests potential interference caused
by glasses, but it could also be attributed to other factors, warranting further investigation.

Moreover, although specific characteristics of the ride, such as start time, temperature, and wind
speed, were recorded, these factors could influence the overall results of the study. For instance,
these conditions might affect the amount of traffic present during the rides, potentially impacting
the physiological and performance measures recorded in real-time. In future studies, the authors
plan to utilize the recordings to monitor traffic volumes and assess their potential influence.

Additionally, upon reviewing the camera recordings, it was observed that certain subjects did not
effectively communicate with their surroundings. Few participants performed shoulder checks
before crossing intersections or signaling to vehicles or pedestrians. Despite being instructed to
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ride as naturally as possible, akin to a typical day, some participants resorted to using the sidewalk,
even though they reported feeling highly safe riding their bikes in proximity to cars.

Referring back to Figure 3, subjects encountered five types of infrastructure: bike routes, buffered
lanes, bike lanes, bike boulevards, and proposed bike routes/non-biking infrastructure. These
infrastructure types could change along a single road section, raising issues discussed in the
literature review session on factors impacting perception, workload, and behavior. From a cyclist's
perspective, these infrastructure types offer little distinction, except for the noticeable difference
between cycling infrastructure and the main roadway. Additionally, referring to Figure 5, subjects
encountered multiple roadway LTS, and Figure 4 provides data on the BLOS for some sections.
The data from this naturalistic study allows us to evaluate the differences in infrastructure types
on cyclist stress and behavior, as well as the transitions between different infrastructure types. This
data could also provide a quantitative measure to evaluate BLOS. By analyzing the ECG data
along the route, research could determine if there is a significant difference in heart rate between
infrastructure types, potentially indicating higher stress levels in certain types over others.
Similarly, by evaluating the EEG data during transitions between infrastructure types, evidence
could be found to corroborate whether different infrastructure types affect stress levels or if these
changes are not noticeable to cyclists.

These findings are important for city planners, as they can inform which infrastructure types are
preferred by cyclists or highlight that certain designations may be unnecessary from a cyclist’s
perspective. Additionally, by evaluating physiological data along the route, researchers can
identify sections where stress is correlated with a BLOS of 1 or where no stress is identified, which
may correlate with sections not being calculated. Since the route did not encounter any paths with
a BLOS greater than 1, further investigation is needed to assess stress levels across various BLOS
levels. Eye-tracking data could also be incorporated into these analyses, though producing fixation
heat maps may be challenging. Alternative methods should be evaluated to determine if
incorporating eye-tracking data would be beneficial. If producing fixation heat maps is feasible,
similar methods applied to intersections could be applied to roadway sections and compared
against the ECG data, noting that current literature suggests broader fixation patterns along
sections are a stress response.

Finally, the data collected as part of this experiment is very complex, and combining capabilities
is necessary for processing the data together. Hence, future research should consider purchasing
biosensors that combine multiple sensors within a single device. This approach would minimize
interference with the cycling task, which is particularly important in naturalistic studies where
subjects need to maintain a natural feeling while cycling and have the freedom of movement
necessary for exerting physical effort.
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Conclusions and Recommendations

This study highlights the importance of understanding the various factors influencing cyclists'
mental workload, perception, comfort, and behavior. By combining subjective measures with
physiological and eye-tracking data, we have gained a comprehensive understanding of cyclists'
experiences and the impact of different infrastructural contexts on their performance and safety.

The cycling naturalistic experiment design incorporated subjective, performance, and
physiological measures. These measures were selected to cross-validate and complement each
other, ensuring optimal data collection. The sample of participants was carefully selected to
represent the gender demographics of the US cycling population. The overall experimental route
design included various types of intersections, such as signalized intersections, roundabouts, and
stop signs, along with different road segments, including bike lanes and mixed lanes with vehicular
traffic.

Our findings reveal that while cyclists may not perceive the task as physically or mentally
demanding, physiological indicators such as heart and breathing rates suggest otherwise. The
subjective data also shed light on the influence of cultural and socioeconomic factors on cyclists'
route planning and decision-making processes. These insights underscore the necessity of
integrating subjective and objective measures to fully capture the complexities of cyclists'
experiences. The eye-tracking data provide valuable information on cyclists' visual attention and
scanning behavior, particularly at intersections. Gender differences in visual attention patterns
were observed, indicating that further research is needed to understand these differences and their
implications for cycling safety.

Lessons learned from this study emphasize the importance of careful planning in sensor selection
and the need for thorough communication with participants and team members. Future studies
should consider using integrated biosensors to minimize interference with the cycling task and
ensure more naturalistic data collection.

Despite the limitations, such as the inability of subjective measures to capture moment-to-moment
data and the influence of unexpected outliers, this study provides a solid foundation for future
research. By leveraging advanced technologies and naturalistic study designs, we can develop
more comprehensive and accurate assessments of cyclist workload and safety. Ultimately, these
insights can inform the design of safer and more enjoyable cycling environments, contributing to
the broader goal of promoting active transportation and improving public health.

In conclusion, this study underscores the critical need for a holistic approach to understanding
cyclists' experiences. By integrating multiple data sources and considering the diverse factors that
impact cycling, we can enhance our knowledge and develop effective strategies to improve cycling
infrastructure and safety. This research serves as a stepping stone for future studies aimed at
making cycling a safer and more viable mode of transportation for all.
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Appendix A Questionnaire Previous to the Experiment

Thank you for your interest in participating in this study. Responding to these questions will allow
us to create a more robust analysis as part of our project. The questions are mainly related to your
transportation habits and sociodemographic.

SECTION 1 Socioeconomic and Demographic Questions
Q1. What is your age? (Please indicate by writing your age in a numerical format, such as 38)

Q2. With which gender do you identify (or more closely identify)?
0. Male
1. Female
2. Non-binary/Third gender

Q3. What is the highest level of education that you have completed? Please select one.
Grade School

Some High School

Graduated High School

Some Colleges — no degree

Technical School or Vocational Training

Graduated College — Associate’s degree

Graduated College — Bachelor’s degree

Post Graduate Degree — MS, MA, MBA, MD, DVM, DDS, etc

Doctorate — Ph.D.

PN WD = O

Q4. What best describes your ancestry or racial heritage? Please select one.
1- African/African-American
2- Asian
3- Caucasian / White
4- Indigenous Peoples (i.e. Native American, Pacific Islander, Aboriginal, Aleutian)
5- Prefer not to answer
6- Other

Q5. Are you Hispanic or Latino?
I. Yes
2. No
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Q6. Including yourself, how many persons are in your household?

- 1
2- 2
3- 3
4- 4

5- 5 or more

Q7. Do you have a U.S. driver's license or equivalent driver’s license that allows you to drive in
the U.S.?
I. Yes

2. No

Q8. How many accidents have you experienced while driving a car in the last three years?
I- 0

2- 1
3- 2
4- 3

5- 4 or more
6- I have not been driving the last three years

Q9. How many accidents have you experienced while riding a bike in the last three years?
I- 0

2- 1
3- 2
4- 3

5- 4 or more
6- I have not been driving the last three years

Q10. What is your current marital status? Please select one.

a. Never Married/Single
b. Living with partner

c. Married

d. Separated

e. Divorced

f. Widowed

|
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SECTION 2 Travel Habits & Micromobility
Q11. Which of the following is your primary mode of travel (used in most trips or more often than
other modes and/or used for most of the distance) for each trip purpose listed below? (Please select
only one mode for each trip purpose listed below).

Drive alone

Walk Bike (car/motorcycle, etc.) Others
(1 2) 3) 4)
Work/School (1)
Grocery and other
shopping (2)

Personal business
(such as errands) (3)

Social/recreational (4)

Q12. During your typical out-of-home travel week 1, how many trips did you take for the following
purposes using any mode or combination of modes of travel (including but not limited to walking,
cycling, driving, carpooling, public transportation, etc.)?

Note: A trip is defined as a single journey between no more than two destinations for a specific
purpose (for example, taking a bus to work, cycling to the grocery store, walking to a restaurant,
or driving to a park and ride and riding the metro to work, etc.).

0 1 2-3 4-5 6-7 8 or more
(0) (D ) 3) (4) )
Work/School (1)
Grocery and other
shopping (2)

Personal business
(such as errands) (3)

Social/recreational (4)

Q13. Do they consider the time of day when you cycle or use an e-scooter?
0. Yes

1. No
2. Sometimes
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Q14. Do you consider the weather when deciding when to cycle or use an e-scooter?
I- Yes
2- No
3- Sometimes

Q15. How likely are you to listen to music with headphones while riding a bike or e-scooter?
1- Very unlikely

2- Unlikely
3- Neutral
4- Likely

5- Very likely

Q16. How likely are you to listen to music with a speaker while riding a bike or e-scooter?

1. Very unlikely
2. Unlikely

3. Neutral

4. Likely

5. Very likely

Q17. How likely are you to talk to other cyclists/passengers/pedestrians on your route?

1. Very unlikely
2. Unlikely

3. Neutral

4. Likely

5. Very likely

Q18. How likely is it that you would ride micromobility devices in the following infrastructure:

Very
Unlikely | Unlikely | Neutral | Likely | Very Likely
(@) 2 3) 4 (5

A route with a cycle path

The route with the least traffic

A smooth surface on the cycle
path/road

A most direct route
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The presence of signalized
crossings

The fastest route

Marked cycle/e-scooter lanes in
the crossings

Good street lighting

SECTION 3. Personality Statements from Maas
Q19. How much would you agree with the following statements:

Strongly Strongly
Disagree | Disagree | Neutral | Agree | Agree
@) 2) 3) 4 )

I find it difficult to stay focused on
what’s happening in the present.

I tend to walk quickly to get where I’'m
going without paying attention to what I
experience along the way.

I do jobs or tasks automatically, without
being aware of what I'm doing.

I find myself listening to someone with
one ear, doing something else at the same
time.

I drive places on ‘automatic pilot’ and
then wonder why I went there.

I find myself doing things without paying
attention.

Q20. How satisfied are you with your health?

0. Very dissatisfied
1. Dissatisfied

2. Neutral

3. Satisfied

4. Very satisfied
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Appendix B Questionnaire Previous to the Experiment

Thank you for participating in this study. This last questionnaire would assess subjectively your
perceptions about the activity you just performed.

SECTION 1 NASA TLX

QI1.Please rate the following statements:

How mentally demanding was the task?  Very Very
Low High
How physically demanding was the task? = Very Very
Low High
How hurried or rushed was the pace of v
ery Very
the task? Low High
How successful were you in
Zf)c(:)omphshlng what you were asked to Perfect Failure
How hard did you have to work to v
. ery Very
accomplish your level of performance? Low High
How insecure, discouraged, irritated, v
ery Very
stressed, and annoyed were you? Low High

SECTION 2 Other Workload Questions
Q2. Did you feel safe due to the proximity of cars?
4- Strongly Agree - I felt very safe due to the proximity of cars.

5- Agree - I felt safe due to the proximity of cars.

6- Neutral - I neither felt safe nor unsafe due to the proximity of cars.
7- Disagree - I felt unsafe due to the proximity of cars.

8- Strongly Disagree - I felt very unsafe due to the proximity of cars.

Q3. Did you feel safe due to the volume of cars?
1- Strongly Agree - I felt very safe due to the volume of cars.

2- Agree - I felt safe due to the volume of cars.

3- Neutral - I neither felt safe nor unsafe due to the volume of cars.
4- Disagree - I felt unsafe due to the volume of cars.

5- Strongly Disagree - I felt very unsafe due to the volume of cars.
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Q4. How fast are you breathing?

Nk W=

Very Slow - My breathing is very slow and steady.
Slow - My breathing is slow but steady.

Normal - My breathing is at a normal pace.

Fast - My breathing is faster than usual.

Very Fast - My breathing is very fast and rapid.

Q5. How fast is your heart beating?

kv =

Very Slow - My heart beating is very slow and steady.
Slow - My heart beating is slow but steady.

Normal - My heart beating is at a normal pace.

Fast - My heart is beating faster than usual.

Very Fast - My heart beat very fast and rapidly.

Q6. How tired are your muscles?

0.
1.

Not tired at all - My muscles feel fresh and rested.

Slightly tired - My muscles feel a little fatigued, but I can still perform activities without
much difficulty.

Moderately tired - My muscles feel noticeably fatigued, and I may experience some
discomfort during physical activities.

Very tired - My muscles feel quite tired, and it's challenging to perform physical tasks.
Extremely tired - My muscles feel completely exhausted, and even simple movements are
difficult.

Q7. How much are you sweating?

Not sweating at all - I am not sweating or perspiring.

Very little - I am sweating minimally, if at all.

Moderate - I am sweating moderately, but it is not excessive.

Considerably - I am sweating noticeably, and my clothes may feel damp.
Profusely - I am sweating heavily, and it is dripping or running down my body.
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